R package data.table: Extension of ’data.frame’. Fast aggregation of large data (e.g. 100GB in RAM), fast ordered joins, fast add/modify/delete of columns by group using no copies at all, list columns, a fast friendly file reader and parallel file writer. Offers a natural and flexible syntax, for faster development.

References in zbMATH (referenced in 36 articles )

Showing results 1 to 20 of 36.
Sorted by year (citations)

1 2 next

  1. Adithi R. Upadhya, Pratyush Agrawal, Sreekanth Vakacherla, Meenakshi Kushwaha: pollucheck v1.0: A package to explore open-source air pollution data (2021) not zbMATH
  2. Andreas Hill, Alexander Massey, Daniel Mandallaz: The R Package forestinventory: Design-Based Global and Small Area Estimations for Multiphase Forest Inventories (2021) not zbMATH
  3. Arnald Puy, Samuele Lo Piano, Andrea Saltelli, Simon A. Levin: sensobol: an R package to compute variance-based sensitivity indices (2021) arXiv
  4. Clemens Schmid; Stephan Schiffels: bleiglas: An R package for interpolation and visualisation of spatiotemporal data with 3D tessellation (2021) not zbMATH
  5. David Ardia, Keven Bluteau, Samuel Borms, Kris Boudt: The R package sentometrics to compute, aggregate and predict with textual sentiment (2021) arXiv
  6. Krzysztof Gajowniczek; Tomasz Ząbkowski: ImbTreeAUC: An R package for building classification trees using the area under the ROC curve (AUC) on imbalanced datasets (2021) not zbMATH
  7. Samuel Borms, David Ardia, Keven Bluteau, Kris Boudt, Jeroen Van Pelt, Andres Algaba: The R Package sentometrics to Compute, Aggregate, and Predict with Textual Sentiment (2021) not zbMATH
  8. Wollschläger, Daniel: R compact. The fast introduction into data analysis (2021)
  9. Daneshgar, Neda; Sarmad, Majid: \textttword.alignment: an \textttRpackage for computing statistical word alignment and its evaluation (2020)
  10. Erik Bülow: coder: An R package for code-based item classification and categorization (2020) not zbMATH
  11. Martin Happ, Georg Zimmermann, Edgar Brunner, Arne C. Bathke: Pseudo-Ranks: How to Calculate Them Efficiently in R (2020) not zbMATH
  12. Nicolas R. Lauve, Stuart J. Nelson, S. Stanley Young, Robert L. Obenchain, Christophe G. Lambert: LocalControl: An R Package for Comparative Safety and Effectiveness Research (2020) not zbMATH
  13. Tian-Yuan Huang; Bin Zhao: tidyfst: Tidy Verbs for Fast Data Manipulation (2020) not zbMATH
  14. Anne Petersen; Claus Ekstrøm: dataMaid: Your Assistant for Documenting Supervised Data Quality Screening in R (2019) not zbMATH
  15. Margaret Roberts; Brandon Stewart; Dustin Tingley: stm: An R Package for Structural Topic Models (2019) not zbMATH
  16. Mateusz Staniak, Przemyslaw Biecek: The Landscape of R Packages for Automated Exploratory Data Analysis (2019) arXiv
  17. Peter DeWitt; Tell Bennett: ensr: R Package for Simultaneous Selection of Elastic Net Tuning Parameters (2019) arXiv
  18. Ramasubramanian, Karthik; Singh, Abhishek: Machine learning using R. With time series and industry-based use cases in R (2019)
  19. Sellereite, Nikolai; Jullum, Martin: shapr: An R-package for explaining machine learning models with dependence-aware Shapley values (2019) not zbMATH
  20. A. S. G. Robotham, L. J. M. Davies, S. P. Driver, S. Koushan, D. S. Taranu, S. Casura, J. Liske: ProFound: Source Extraction and Application to Modern Survey Data (2018) arXiv

1 2 next