PowerFLOW

PowerFLOW: Through the usage of our unique, inherently transient Lattice Boltzmann-based physics, Exa’s PowerFLOW® CFD solution performs simulations that accurately predict real world conditions. Using the PowerFLOW suite, engineers evaluate product performance early in the design process prior to any prototype being built — when the impact of change is most significant for design and budgets. PowerFLOW imports fully complex model geometry and accurately and efficiently performs aerodynamic, aeroacoustic and thermal management simulations.


References in zbMATH (referenced in 19 articles , 1 standard article )

Showing results 1 to 19 of 19.
Sorted by year (citations)

  1. Degrigny, Johan; Cai, Shang-Gui; Boussuge, Jean-François; Sagaut, Pierre: Improved wall model treatment for aerodynamic flows in LBM (2021)
  2. Krause, Mathias J.; Kummerländer, Adrian; Avis, Samuel J.; Kusumaatmaja, Halim; Dapelo, Davide; Klemens, Fabian; Gaedtke, Maximilian; Hafen, Nicolas; Mink, Albert; Trunk, Robin; Marquardt, Jan E.; Maier, Marie-Luise; Haussmann, Marc; Simonis, Stephan: OpenLB -- open source lattice Boltzmann code (2021)
  3. Löhner, Rainald; Othmer, Carsten; Mrosek, M.; Figueroa, Alejandro; Degro, Atis: Overnight industrial LES for external aerodynamics (2021)
  4. Spinelli, Gregorio Gerardo; Celik, Bayram: Applications of a central ENO and AUSM schemes based compressible N-S solver with reconstructed conservative variables (2021)
  5. Xin, Jianjian; Chen, Zhenlei; Shi, Fan; Shi, Fulong; Jin, Qiu: A radial basis function-based ghost cell method for complex rigid or flexible moving boundary flows (2021)
  6. Wang, Yong; Zhong, Chengwen; Cao, Jun; Zhuo, Congshan; Liu, Sha: A simplified finite volume lattice Boltzmann method for simulations of fluid flows from laminar to turbulent regime. II: Extension towards turbulent flow simulation (2020)
  7. Guo, Kai; Cui, Xiongwei; Liu, Minghao: A coupled lattice Boltzmann-volume penalization for flows past fixed solid obstacles with local mesh refinement (2018)
  8. Sun, Y.; Shu, C.; Wang, Y.; Teo, C. J.; Chen, Z.: An immersed boundary-gas kinetic flux solver for simulation of incompressible flows (2017)
  9. Pellerin, Nicolas; Leclaire, Sébastien; Reggio, Marcelo: An implementation of the Spalart-Allmaras turbulence model in a multi-domain lattice Boltzmann method for solving turbulent airfoil flows (2015)
  10. Sun, Chenghai; Pérot, Franck; Zhang, Raoyang; Freed, David M.; Chen, Hudong: Impedance boundary condition for lattice Boltzmann model (2013)
  11. Li, Kai; Zhong, Chengwen; Zhuo, Congshan; Cao, Jun: Non-body-fitted Cartesian-mesh simulation of highly turbulent flows using multi-relaxation-time lattice Boltzmann method (2012)
  12. Du, TeZhuan; Li, XiangQun; Zhang, XiaLing; Wang, YiWei: Lattice Boltzmann method used for the aircraft characteristics computation at high angle of attack (2010)
  13. Evstigneev, N. M.; Magnitskii, N. A.: Nonlinear dynamics in the initial-boundary value problem on the fluid flow from a ledge for the hydrodynamic approximation to the Boltzmann equations (2010)
  14. Wu, J.; Shu, C.: Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications (2009)
  15. Wang, Yiwei; Wang, Yang; An, Yiran; Chen, Yaosong: Aerodynamic simulation of high-speed trains based on the lattice Boltzmann method (LBM) (2008)
  16. Geller, Sebastian; Krafczyk, Manfred; Tölke, Jonas; Turek, Stefan; Hron, Jaroslav: Benchmark computations based on lattice-Boltzmann, finite element and finite volume methods for laminar flows (2006)
  17. Peng, Y.; Shu, C.; Chew, Y. T.; Niu, X. D.; Lu, X. Y.: Application of multi-block approach in the immersed boundary-lattice Boltzmann method for viscous fluid flows (2006)
  18. Imamura, Taro; Suzuki, Kojiro; Nakamura, Takashi; Yoshida, Masahiro: Acceleration of steady-state lattice Boltzmann simulations on non-uniform mesh using local time step method (2005)
  19. Lockard, David P.; Luo, Li-Shi; Milder, Seth D.; Singer, Bart A.: Evaluation of PowerFLOW for aerodynamic applications (2002)