propy: a tool to generate various modes of Chou’s PseAAC. SUMMARY: Sequence-derived structural and physiochemical features have been frequently used for analysing and predicting structural, functional, expression and interaction profiles of proteins and peptides. To facilitate extensive studies of proteins and peptides, we developed a freely available, open source python package called protein in python (propy) for calculating the widely used structural and physicochemical features of proteins and peptides from amino acid sequence. It computes five feature groups composed of 13 features, including amino acid composition, dipeptide composition, tripeptide composition, normalized Moreau-Broto autocorrelation, Moran autocorrelation, Geary autocorrelation, sequence-order-coupling number, quasi-sequence-order descriptors, composition, transition and distribution of various structural and physicochemical properties and two types of pseudo amino acid composition (PseAAC) descriptors. These features could be generally regarded as different Chou’s PseAAC modes. In addition, it can also easily compute the previous descriptors based on user-defined properties, which are automatically available from the AAindex database. AVAILABILITY: The python package, propy, is freely available via, and it runs on Linux and MS-Windows.

References in zbMATH (referenced in 27 articles )

Showing results 1 to 20 of 27.
Sorted by year (citations)

1 2 next

  1. Ahmad, Jamal; Hayat, Maqsood: MFSC: multi-voting based feature selection for classification of Golgi proteins by adopting the general form of Chou’s PseAAC components (2019)
  2. Hussain, Waqar; Khan, Yaser Daanial; Rasool, Nouman; Khan, Sher Afzal; Chou, Kuo-Chen: SPrenylC-PseAAC: a sequence-based model developed via Chou’s 5-steps rule and general PseAAC for identifying S-prenylation sites in proteins (2019)
  3. Jia, Jianhua; Li, Xiaoyan; Qiu, Wangren; Xiao, Xuan; Chou, Kuo-Chen: iPPI-PseAAC(CGR): identify protein-protein interactions by incorporating chaos game representation into PseAAC (2019)
  4. Khan, Yaser Daanial; Jamil, Mehreen; Hussain, Waqar; Rasool, Nouman; Khan, Sher Afzal; Chou, Kuo-Chen: pSSbond-PseAAC: prediction of disulfide bonding sites by integration of PseAAC and statistical moments (2019)
  5. Ning, Qiao; Ma, Zhiqiang; Zhao, Xiaowei: Dforml(KNN)-PseAAC: detecting formylation sites from protein sequences using K-nearest neighbor algorithm via Chou’s 5-step rule and pseudo components (2019)
  6. Tahir, Muhammad; Tayara, Hilal; Chong, Kil To: iRNA-PseKNC(2methyl): identify RNA 2’-O-methylation sites by convolution neural network and Chou’s pseudo components (2019)
  7. Arif, Muhammad; Hayat, Maqsood; Jan, Zahoor: IMem-2LSAAC: a two-level model for discrimination of membrane proteins and their types by extending the notion of SAAC into Chou’s pseudo amino acid composition (2018)
  8. Cheng, Xiang; Xiao, Xuan; Chou, Kuo-Chen: pLoc_bal-mGneg: predict subcellular localization of Gram-negative bacterial proteins by quasi-balancing training dataset and general PseAAC (2018)
  9. Amina Asif, Wajid Arshad Abbasi, Farzeen Munir, Asa Ben-Hur, Fayyaz ul Amir Afsar Minhas: pyLEMMINGS: Large Margin Multiple Instance Classification and Ranking for Bioinformatics Applications (2017) arXiv
  10. Ali, Farman; Hayat, Maqsood: Machine learning approaches for discrimination of extracellular matrix proteins using hybrid feature space (2016)
  11. Jia, Jianhua; Liu, Zi; Xiao, Xuan; Liu, Bingxiang; Chou, Kuo-Chen: pSuc-Lys: predict lysine succinylation sites in proteins with PseAAC and ensemble random forest approach (2016)
  12. Jiao, Ya-Sen; Du, Pu-Feng: Prediction of Golgi-resident protein types using general form of Chou’s pseudo-amino acid compositions: approaches with minimal redundancy maximal relevance feature selection (2016)
  13. Jiao, Ya-Sen; Du, Pu-Feng: Predicting Golgi-resident protein types using pseudo amino acid compositions: approaches with positional specific physicochemical properties (2016)
  14. Ali, Farman; Hayat, Maqsood: Classification of membrane protein types using voting feature interval in combination with Chou’s pseudo amino acid composition (2015)
  15. Ju, Zhe; Cao, Jun-Zhe; Gu, Hong: iLM-2L: a two-level predictor for identifying protein lysine methylation sites and their methylation degrees by incorporating K-gap amino acid pairs into Chou’s general PseAAC (2015)
  16. Khan, Zaheer Ullah; Hayat, Maqsood; Khan, Muazzam Ali: Discrimination of acidic and alkaline enzyme using Chou’s pseudo amino acid composition in conjunction with probabilistic neural network model (2015)
  17. Kumar, Ravindra; Srivastava, Abhishikha; Kumari, Bandana; Kumar, Manish: Prediction of (\beta)-lactamase and its class by Chou’s pseudo-amino acid composition and support vector machine (2015)
  18. Bakhtiarizadeh, Mohammad Reza; Moradi-Shahrbabak, Mohammad; Ebrahimi, Mansour; Ebrahimie, Esmaeil: Neural network and SVM classifiers accurately predict lipid binding proteins, irrespective of sequence homology (2014)
  19. Hajisharifi, Zohre; Piryaiee, Moien; Mohammad Beigi, Majid; Behbahani, Mandana; Mohabatkar, Hassan: Predicting anticancer peptides with Chou’s pseudo amino acid composition and investigating their mutagenicity via ames test (2014)
  20. Lyons, James; Biswas, Neela; Sharma, Alok; Dehzangi, Abdollah; Paliwal, Kuldip K.: Protein fold recognition by alignment of amino acid residues using kernelized dynamic time warping (2014)

1 2 next