pySecDec: a toolbox for the numerical evaluation of multi-scale integrals. We present pySecDec, a new version of the program SecDec, which performs the factorisation of dimensionally regulated poles in parametric integrals, and the subsequent numerical evaluation of the finite coefficients. The algebraic part of the program is now written in the form of python modules, which allow a very flexible usage. The optimization of the C++ code, generated using FORM, is improved, leading to a faster numerical convergence. The new version also creates a library of the integrand functions, such that it can be linked to user-specific codes for the evaluation of matrix elements in a way similar to analytic integral libraries.

References in zbMATH (referenced in 15 articles , 1 standard article )

Showing results 1 to 15 of 15.
Sorted by year (citations)

  1. Xiao Liu, Yan-Qing Ma: AMFlow: a Mathematica Package for Feynman integrals computation via Auxiliary Mass Flow (2022) arXiv
  2. Dlapa, Christoph; Li, Xiaodi; Zhang, Yang: Leading singularities in Baikov representation and Feynman integrals with uniform transcendental weight (2021)
  3. Heinrich, Gudrun: Collider physics at the precision frontier (2021)
  4. Pablo Gómez, Håvard Hem Toftevaag, Gabriele Meoni: torchquad: Numerical Integration in Arbitrary Dimensions with PyTorch (2021) not zbMATH
  5. Pikelner, Andrey: Three-loop vertex integrals at symmetric point (2021)
  6. Vysotsky, L. I.; Smirnov, A. V.; Tyrtyshnikov, E. E.: Tensor-train numerical integration of multivariate functions with singularities (2021)
  7. Capatti, Zeno; Hirschi, Valentin; Kermanschah, Dario; Pelloni, Andrea; Ruijl, Ben: Numerical loop-tree duality: contour deformation and subtraction (2020)
  8. Caron-Huot, Simon; Chicherin, Dmitry; Henn, Johannes; Zhang, Yang; Zoia, Simone: Multi-Regge limit of the two-loop five-point amplitudes in (\mathcalN= 4) super Yang-Mills and (\mathcalN= 8) supergravity (2020)
  9. Chicherin, D.; Sotnikov, V.: Pentagon functions for scattering of five massless particles (2020)
  10. Duhr, Claude; Tancredi, Lorenzo: Algorithms and tools for iterated Eisenstein integrals (2020)
  11. Martijn Hidding: DiffExp, a Mathematica package for computing Feynman integrals in terms of one-dimensional series expansions (2020) arXiv
  12. Tarasov, O. V.: Using functional equations to calculate Feynman integrals (2019)
  13. Borowka, Sophia; Gehrmann, Thomas; Hulme, Daniel: Systematic approximation of multi-scale Feynman integrals (2018)
  14. Harley, Mark; Moriello, Francesco; Schabinger, Robert M.: Baikov-Lee representations of cut Feynman integrals (2017)
  15. S. Borowka, G. Heinrich, S. Jahn, S.P. Jones, M. Kerner, J. Schlenk, T. Zirke: pySecDec: a toolbox for the numerical evaluation of multi-scale integrals (2017) arXiv