MitISEM
R package MitISEM: Mixture of Student t Distributions using Importance Sampling and Expectation Maximization. Flexible multivariate function approximation using adapted Mixture of Student t Distributions. Mixture of t distribution is obtained using Importance Sampling weighted Expectation Maximization algorithm.
Keywords for this software
References in zbMATH (referenced in 4 articles )
Showing results 1 to 4 of 4.
Sorted by year (- Dellaportas, Petros; Tsionas, Mike G.: Importance sampling from posterior distributions using copula-like approximations (2019)
- Geweke, John; Durham, Garland: Sequentially adaptive Bayesian learning algorithms for inference and optimization (2019)
- Nalan Baştürk and Stefano Grassi and Lennart Hoogerheide and Anne Opschoor and Herman van Dijk: The R Package MitISEM: Efficient and Robust Simulation Procedures for Bayesian Inference (2017) not zbMATH
- Hoogerheide, Lennart; Opschoor, Anne; van Dijk, Herman K.: A class of adaptive importance sampling weighted EM algorithms for efficient and robust posterior and predictive simulation (2012)