Neper
Neper: polycrystal generation and meshing. Neper is a software package for polycrystal generation and meshing. It can deal with 2D and 3D polycrystals with very large numbers of grains.
Keywords for this software
References in zbMATH (referenced in 52 articles , 1 standard article )
Showing results 1 to 20 of 52.
Sorted by year (- Grilli, Nicolò; Hu, Daijun; Yushu, Dewen; Chen, Fan; Yan, Wentao: Crystal plasticity model of residual stress in additive manufacturing using the element elimination and reactivation method (2022)
- Böhm, Christoph; Hudobivnik, Blaž; Marino, Michele; Wriggers, Peter: Electro-magneto-mechanically response of polycrystalline materials: computational homogenization via the virtual element method (2021)
- Coelho, Karolinne O.; Devloo, Philippe R. B.; Gomes, Sônia M.: Error estimates for the scaled boundary finite element method (2021)
- El Majaty, Youssri; Brenner, Renald; Leblond, Jean-Baptiste: FFT-based micromechanical simulations of transformation plasticity. Comparison with a limit-analysis-based theory (2021)
- El Shawish, S.; Mede, T.; Hure, J.: A single grain boundary parameter to characterize normal stress fluctuations in materials with elastic cubic grains (2021)
- Gay Neto, Alfredo; Hudobivnik, Blaž; Moherdaui, Tiago Fernandes; Wriggers, Peter: Flexible polyhedra modeled by the virtual element method in a discrete element context (2021)
- Li, X. F.; Li, H. B.; Zhao, J.: Transgranular fracturing of crystalline rocks and its influence on rock strengths: insights from a grain-scale continuum-discontinuum approach (2021)
- Parrinello, Francesco; Gulizzi, Vincenzo; Benedetti, Ivano: A computational framework for low-cycle fatigue in polycrystalline materials (2021)
- Rodrigues Lopes, Igor A.; Ferreira, Bernardo P.; Andrade Pires, Francisco M.: On the efficient enforcement of uniform traction and mortar periodic boundary conditions in computational homogenisation (2021)
- Seitl, F.; Petrich, L.; Staněk, J.; Krill, C. E. III; Schmidt, V.; Beneš, V.: Exploration of Gibbs-Laguerre tessellations for three-dimensional stochastic modeling (2021)
- Voyiadjis, George Z.; Jeong, Juyoung; Kysar, Jeffrey W.: Grain size dependence of polycrystalline plasticity modeling in cylindrical indentation (2021)
- Zoltan Csati, Jean-François Witz, Vincent Magnier, Ahmed El Bartali, Nathalie Limodin; Denis Najjar: CristalX: Facilitating simulations for experimentally obtained grain-based microstructures (2021) not zbMATH
- Aduloju, Sunday C.; Truster, Timothy J.: A primal formulation for imposing periodic boundary conditions on conforming and nonconforming meshes (2020)
- Coulet, Julien; Faille, Isabelle; Girault, Vivette; Guy, Nicolas; Nataf, Frédéric: A fully coupled scheme using virtual element method and finite volume for poroelasticity (2020)
- de Francqueville, Foucault; Gilormini, Pierre; Diani, Julie; Vandenbroucke, Aude: Comparison of the finite strain macroscopic behavior and local damage of a soft matrix highly reinforced by spherical or polyhedral particles (2020)
- Jalili, M.; Soltani, B.: Investigation the micromechanisms of strain localization formation in AZ31 Mg alloy: a mesoscale 3D full-field crystal plasticity computational homogenization study (2020)
- Kasemer, Matthew; Dawson, Paul: A finite element methodology to incorporate kinematic activation of discrete deformation twins in a crystal plasticity framework (2020)
- Ma, Ran; Sun, WaiChing: FFT-based solver for higher-order and multi-phase-field fracture models applied to strongly anisotropic brittle materials (2020)
- Tewari, Sourav Mukul; Ayyagari, Ravi Sastri: A novel approach to generating microstructurally-aware non-convex domains (2020)
- Vlassis, Nikolaos N.; Ma, Ran; Sun, WaiChing: Geometric deep learning for computational mechanics. I: Anisotropic hyperelasticity (2020)