kepler98

The 1998 Proof of the Kepler Conjecture. The Kepler conjecture asserts that no packing of congruent balls in Euclidean 3-space has density greater than the familiar pyramid-shaped packing used to stack oranges at the market. This repository contains the computer code and other documentation for the 1998 proof of the Kepler Conjecture by Sam Ferguson and Tom Hales. This code is not regularly maintained, but it has been deposited at github as a historical record.


References in zbMATH (referenced in 185 articles , 3 standard articles )

Showing results 1 to 20 of 185.
Sorted by year (citations)

1 2 3 ... 8 9 10 next

  1. Amato, Daniela A.; Cherlin, Gregory; Macpherson, H. Dugald: Metrically homogeneous graphs of diameter (3) (2021)
  2. Bétermin, Laurent; De Luca, Lucia; Petrache, Mircea: Crystallization to the square lattice for a two-body potential (2021)
  3. Bourne, David P.; Cristoferi, Riccardo: Asymptotic optimality of the triangular lattice for a class of optimal location problems (2021)
  4. Carette, Jacques; Farmer, William M.; Kohlhase, Michael; Rabe, Florian: Big math and the one-brain barrier: the tetrapod model of mathematical knowledge (2021)
  5. Colbrook, Matthew J.: Computing spectral measures and spectral types (2021)
  6. Dong, Junkai; Elser, Veit; Gyawali, Gaurav; Jee, Kai Yen; Kent-Dobias, Jaron; Mandaiya, Avinash; Renz, Megan; Su, Yubo: Glass phenomenology in the hard matrix model (2021)
  7. Färber, Michael; Kaliszyk, Cezary; Urban, Josef: Machine learning guidance for connection tableaux (2021)
  8. Feigenbaum, Ahram S.; Grabner, Peter J.; Hardin, Douglas P.: Eigenfunctions of the Fourier transform with specified zeros (2021)
  9. Fernique, Thomas: Compact packings of space with two sizes of spheres (2021)
  10. Fernique, Thomas; Hashemi, Amir; Sizova, Olga: Compact packings of the plane with three sizes of discs (2021)
  11. Fervari, Raul; Trucco, Francisco; Ziliani, Beta: Verification of dynamic bisimulation theorems in Coq (2021)
  12. Koutsoukou-Argyraki, Angeliki: Formalising mathematics -- in praxis; a mathematician’s first experiences with Isabelle/HOL and the why and how of getting started (2021)
  13. Lipschütz, Henriette; Skrodzki, Martin; Reitebuch, Ulrich; Polthier, Konrad: Single-sized spheres on surfaces (S4) (2021)
  14. Nebe, Gabriele: Automorphisms of modular lattices (2021)
  15. Petković, Ivan M.; Herceg, Đorđe: Computer tools for solving mathematical problems: a review (2021)
  16. van den Berg, Jan Bouwe; Breden, Maxime; Lessard, Jean-Philippe; van Veen, Lennaert: Spontaneous periodic orbits in the Navier-Stokes flow (2021)
  17. Afkhami-Jeddi, Nima; Cohn, Henry; Hartman, Thomas; de Laat, David; Tajdini, Amirhossein: High-dimensional sphere packing and the modular bootstrap (2020)
  18. Andreanov, Alexei; Kallus, Yoav: Locally optimal 2-periodic sphere packings (2020)
  19. Bogosel, Beniamin; Bucur, Dorin; Fragalà, Ilaria: Phase field approach to optimal packing problems and related Cheeger clusters (2020)
  20. DeBlois, Jason: Bounds for several-disk packings of hyperbolic surfaces (2020)

1 2 3 ... 8 9 10 next