iOri-Human

iOri-Human: identify human origin of replication by incorporating dinucleotide physicochemical properties into pseudo nucleotide composition. The initiation of replication is an extremely important process in DNA life cycle. Given an uncharacterized DNA sequence, can we identify where its origin of replication (ORI) is located? It is no doubt a fundamental problem in genome analysis. Particularly, with the rapid development of genome sequencing technology that results in a huge amount of sequence data, it is highly desired to develop computational methods for rapidly and effectively identifying the ORIs in these genomes. Unfortunately, by means of the existing computational methods, such as sequence alignment or kmer strategies, it could hardly achieve decent success rates. To address this problem, we developed a predictor called “iOri-Human”. Rigorous jackknife tests have shown that its overall accuracy and stability in identifying human ORIs are over 75% and 50%, respectively. In the predictor, it is through the pseudo nucleotide composition (an extension of pseudo amino acid composition) that 96 physicochemical properties for the 16 possible constituent dinucleotides have been incorporated to reflect the global sequence patterns in DNA as well as its local sequence patterns. Moreover, a user-friendly web-server for iOri-Human has been established at http://lin.uestc.edu.cn/server/iOri-Human.html, by which users can easily get their desired results without the need to through the complicated mathematics involved.


References in zbMATH (referenced in 12 articles )

Showing results 1 to 12 of 12.
Sorted by year (citations)

  1. Hussain, Waqar; Khan, Yaser Daanial; Rasool, Nouman; Khan, Sher Afzal; Chou, Kuo-Chen: SPrenylC-PseAAC: a sequence-based model developed via Chou’s 5-steps rule and general PseAAC for identifying S-prenylation sites in proteins (2019)
  2. Jia, Jianhua; Li, Xiaoyan; Qiu, Wangren; Xiao, Xuan; Chou, Kuo-Chen: iPPI-PseAAC(CGR): identify protein-protein interactions by incorporating chaos game representation into PseAAC (2019)
  3. Lu, Fuhua; Zhu, Maoshu; Lin, Ying; Zhong, Hongbin; Cai, Lei; He, Lin; Chou, Kuo-Chen: The preliminary efficacy evaluation of the CTLA-4-ig treatment against lupus nephritis through \textitin-silico analyses (2019)
  4. Pan, Yi; Wang, Shiyuan; Zhang, Qi; Lu, Qianzi; Su, Dongqing; Zuo, Yongchun; Yang, Lei: Analysis and prediction of animal toxins by various Chou’s pseudo components and reduced amino acid compositions (2019)
  5. Rout, Subhashree; Mahapatra, Rajani Kanta: \textitInsilico analysis of \textitplasmodiumfalciparum CDPK5 protein through molecular modeling, docking and dynamics (2019)
  6. Arif, Muhammad; Hayat, Maqsood; Jan, Zahoor: IMem-2LSAAC: a two-level model for discrimination of membrane proteins and their types by extending the notion of SAAC into Chou’s pseudo amino acid composition (2018)
  7. Jia, Cangzhi; Yang, Qing; Zou, Quan: NucPosPred: predicting species-specific genomic nucleosome positioning via four different modes of general PseKNC (2018)
  8. Mei, Juan; Fu, Yi; Zhao, Ji: Analysis and prediction of ion channel inhibitors by using feature selection and Chou’s general pseudo amino acid composition (2018)
  9. Zhang, Shengli; Liang, Yunyun: Predicting apoptosis protein subcellular localization by integrating auto-cross correlation and PSSM into Chou’s PseAAC (2018)
  10. Goede, Simon L.; de Galan, Bastiaan E.; Leow, Melvin Khee Shing: Personalized glucose-insulin model based on signal analysis (2017)
  11. Pai, Priyadarshini P.; Dash, Tirtharaj; Mondal, Sukanta: Sequence-based discrimination of protein-RNA interacting residues using a probabilistic approach (2017)
  12. Saghapour, Ehsan; Sehhati, Mohammadreza: Prediction of metastasis in advanced colorectal carcinomas using CGH data (2017)