SOLA: a numerical solution algorithm for transient fluid flows. A finite difference technique is presented for solving the Navier-Stokes equations for an incompressible fluid. The technique, based on the Marker-and-Cell method, is simplified to facilitate its use by persons with little or no experience in numerical fluid dynamics. Section I of the report describes the basic algorithm, SOLA, for confined flows; Sec. II describes modifications necessary for free or curved rigid surface boundaries. Each includes a flow chart and a FORTRAN listing. Sample problems show how to incorporate simple modifications into the basic code to adapt it to a variety of problems.

References in zbMATH (referenced in 44 articles )

Showing results 1 to 20 of 44.
Sorted by year (citations)

1 2 3 next

  1. Khattri, Khim B.; Pudasaini, Shiva P.: Channel flow simulation of a mixture with a full-dimensional generalized quasi two-phase model (2019)
  2. Rodio, Maria Giovanna; Bieder, Ulrich: Comparison between compressible, dilatable and incompressible fluid hypotheses efficiency in liquid conditions at high pressure and large temperature differences (2019)
  3. Kozyrakis, G. V.; Delis, A. I.; Kampanis, N. A.: A finite difference solver for incompressible Navier-Stokes flows in complex domains (2017)
  4. Sarkar, Dwaipayan; Upadhyay, Nishant; Roy, Somnath; Rana, Subhas Chandra: Immersed boundary simulation of flow through arterial junctions (2017)
  5. Zwicke, Florian; Eusterholz, Sebastian; Elgeti, Stefanie: Boundary-conforming free-surface flow computations: interface tracking for linear, higher-order and isogeometric finite elements (2017)
  6. Elgeti, S.; Sauerland, H.: Deforming fluid domains within the finite element method: five mesh-based tracking methods in comparison (2016)
  7. Kumar, Manish; Roy, Somnath: A sharp interface immersed boundary method for moving geometries with mass conservation and smooth pressure variation (2016)
  8. Kumar, Manish; Roy, Somnath; Ali, Md Sujaat: An efficient immersed boundary algorithm for simulation of flows in curved and moving geometries (2016)
  9. Lind, Steven J.: On the dynamics of non-spherical magnetic microbubbles (2014)
  10. Silva, J. M.; Ferreira, V. G.; Fontes, S. R.: An evaluation of three upwinding approximations for numerical modeling the flow in tubular membrane of Newtonian and non-Newtonian fluids (2011)
  11. Zogheib, B.; Barron, R. M.: Velocity -- pressure coupling in finite difference formulations for the Navier -- Stokes equations (2011)
  12. Smolentsev, S.; Cuevas, S.; Beltrán, A.: Induced electric current-based formulation in computations of low magnetic Reynolds number magnetohydrodynamic flows (2010)
  13. Noor, Dedy Zulhidayat; Kanna, P. Rajesh; Chern, Ming-Jyh: Flow and heat transfer in a driven square cavity with double-sided oscillating lids in anti-phase (2009)
  14. Glatzel, Thomas; Litterst, Christian; Cupelli, Claudio; Lindemann, Timo; Moosmann, Christian; Niekrawietz, Remigius; Streule, Wolfgang; Zengerle, Roland; Koltay, Peter: Computational fluid dynamics (CFD) software tools for microfluidic applications - a case study (2008)
  15. Mckee, S.; Tomé, M. F.; Ferreira, V. G.; Cuminato, J. A.; Castelo, A.; Sousa, F. S.; Mangiavacchi, N.: The MAC method (2008)
  16. Baghlani, A.; Talebbeydokhti, N.: A mapping technique for numerical computations of bed evolutions (2007)
  17. Del Pin, Facundo; Idelsohn, Sergio; Oñate, Eugenio; Aubry, Romain: The ALE/Lagrangian particle finite element method: a new approach to computation of free-surface flows and fluid--object interactions (2007)
  18. Ferreira, V. G.; Oishi, C. M.; Kurokawa, F. A.; Kaibara, M. K.; Cuminato, J. A.; Castelo, A.; Mangiavacchi, N.; Tomé, M. F.; McKee, S.: A combination of implicit and adaptative upwind tools for the numerical solution of incompressible free surface flows (2007)
  19. Babaei, R.; Abdollahi, J.; Homayonifar, P.; Varahram, N.; Davami, P.: Improved advection algorithm of computational modeling of free-surface flow using structured grids (2006)
  20. Gejadze, I. Yu.; Copeland, G. J. M.: Open boundary control problem for Navier-Stokes equations including a free surface: adjoint sensitivity analysis (2006)

1 2 3 next