References in zbMATH (referenced in 12 articles , 1 standard article )

Showing results 1 to 12 of 12.
Sorted by year (citations)

  1. Abrarov, Sanjar M.; Quine, Brendan M.: A rational approximation of the Dawson’s integral for efficient computation of the complex error function (2018)
  2. Abrarov, Sanjar M.; Quine, Brendan M.; Jagpal, Rajinder K.: A sampling-based approximation of the complex error function and its implementation without poles (2018)
  3. Mofreh R Zaghloul: A FORTRAN Package for Efficient Multi-Accuracy Computations of the Faddeyeva Function and Related Functions of Complex Arguments (2018) arXiv
  4. Abrarov, S. M.; Quine, B. M.: Sampling by incomplete cosine expansion of the sinc function: application to the Voigt/complex error function (2015)
  5. Alazah, Mohammad; Chandler-Wilde, Simon N.; La Porte, Scott: Computing Fresnel integrals via modified trapezium rules (2014)
  6. Plante, Ianik; Devroye, Luc; Cucinotta, Francis A.: Random sampling of the Green’s functions for reversible reactions with an intermediate state (2013)
  7. Abrarov, S. M.; Quine, B. M.: Efficient algorithmic implementation of the Voigt/complex error function based on exponential series approximation (2011)
  8. Nicholas, Mike: A high accuracy algorithm for 3D periodic electromagnetic scattering (2010)
  9. De Bonis, M. C.; Della Vecchia, B.; Mastroianni, G.: Approximation of the Hilbert transform on the real line using Hermite zeros (2002)
  10. Diethelm, Kai: A method for the practical evaluation of the Hilbert transform on the real line (1999)
  11. Müller, Jürgen: Accelerated polynomial approximation of finite order entire functions by growth reduction (1997)
  12. Poppe, G. P. M.; Wijers, C. M. J.: Algorithm 680: Evaluation of the complex error function (1990)