pLoc-mEuk

pLoc-mEuk: Predict subcellular localization of multi-label eukaryotic proteins by extracting the key GO information into general PseAAC. Many efforts have been made in predicting the subcellular localization of eukaryotic proteins, but most of the existing methods have the following two limitations: (1) their coverage scope is less than ten locations and hence many organelles in an eukaryotic cell cannot be covered, and (2) they can only be used to deal with single-label systems in which each of the constituent proteins has one and only one location. Actually, proteins with multiple locations are particularly interesting since they may have some exceptional functions very important for in-depth understanding the biological process in a cell and for selecting drug target as well. Although several predictors (such as ”Euk-mPLoc”, ”Euk-PLoc 2.0” and ”iLoc-Euk”) can cover up to 22 different location sites, and they also have the function to treat multi-labeled proteins, further efforts are needed to improve their prediction quality, particularly in enhancing the absolute true rate and in reducing the absolute false rate. Here we propose a new predictor called ”pLoc-mEuk” by extracting the key GO (Gene Ontology) information into the general PseAAC (Pseudo Amino Acid Composition). Rigorous cross-validations on a high-quality and stringent benchmark dataset have indicated that the proposed pLoc-mEuk predictor is remarkably superior to iLoc-Euk, the best of the aforementioned three predictors. To maximize the convenience of most experimental scientists, a user-friendly web-server for the new predictor has been established at http://www.jci-bioinfo.cn/pLoc-mEuk/, by which users can easily get their desired results without the need to go through the complicated mathematics involved.


References in zbMATH (referenced in 31 articles )

Showing results 1 to 20 of 31.
Sorted by year (citations)

1 2 next

  1. Adilina, Sheikh; Farid, Dewan Md; Shatabda, Swakkhar: Effective DNA binding protein prediction by using key features via Chou’s general PseAAC (2019)
  2. Ahmad, Jamal; Hayat, Maqsood: MFSC: multi-voting based feature selection for classification of Golgi proteins by adopting the general form of Chou’s PseAAC components (2019)
  3. Bai, Xiaolu; Chen, Xiaolin: Rational design, conformational analysis and membrane-penetrating dynamics study of Bac2A-derived antimicrobial peptides against gram-positive clinical strains isolated from pyemia (2019)
  4. Ghosh, Avirup; Yan, Hong: Hydrogen bond analysis of the EGFR-ErbB3 heterodimer related to non-small cell lung cancer and drug resistance (2019)
  5. Hussain, Waqar; Khan, Yaser Daanial; Rasool, Nouman; Khan, Sher Afzal; Chou, Kuo-Chen: SPrenylC-PseAAC: a sequence-based model developed via Chou’s 5-steps rule and general PseAAC for identifying S-prenylation sites in proteins (2019)
  6. Jia, Jianhua; Li, Xiaoyan; Qiu, Wangren; Xiao, Xuan; Chou, Kuo-Chen: iPPI-PseAAC(CGR): identify protein-protein interactions by incorporating chaos game representation into PseAAC (2019)
  7. Khan, Yaser Daanial; Jamil, Mehreen; Hussain, Waqar; Rasool, Nouman; Khan, Sher Afzal; Chou, Kuo-Chen: pSSbond-PseAAC: prediction of disulfide bonding sites by integration of PseAAC and statistical moments (2019)
  8. Lu, Fuhua; Zhu, Maoshu; Lin, Ying; Zhong, Hongbin; Cai, Lei; He, Lin; Chou, Kuo-Chen: The preliminary efficacy evaluation of the CTLA-4-ig treatment against lupus nephritis through \textitin-silico analyses (2019)
  9. Pan, Yi; Wang, Shiyuan; Zhang, Qi; Lu, Qianzi; Su, Dongqing; Zuo, Yongchun; Yang, Lei: Analysis and prediction of animal toxins by various Chou’s pseudo components and reduced amino acid compositions (2019)
  10. Rout, Subhashree; Mahapatra, Rajani Kanta: \textitInsilico analysis of \textitplasmodiumfalciparum CDPK5 protein through molecular modeling, docking and dynamics (2019)
  11. Shen, Yinan; Tang, Jijun; Guo, Fei: Identification of protein subcellular localization via integrating evolutionary and physicochemical information into Chou’s general PseAAC (2019)
  12. Tahir, Muhammad; Tayara, Hilal; Chong, Kil To: iRNA-PseKNC(2methyl): identify RNA 2’-O-methylation sites by convolution neural network and Chou’s pseudo components (2019)
  13. Tian, Baoguang; Wu, Xue; Chen, Cheng; Qiu, Wenying; Ma, Qin; Yu, Bin: Predicting protein-protein interactions by fusing various Chou’s pseudo components and using wavelet denoising approach (2019)
  14. Wang, Lidong; Zhang, Ruijun; Mu, Yashuang: Fu-SulfPred: identification of protein S-sulfenylation sites by fusing forests via Chou’s general PseAAC (2019)
  15. Zhao, Xiaowei; Zhang, Ye; Ning, Qiao; Zhang, Hongrui; Ji, Jinchao; Yin, Minghao: Identifying N(^6)-methyladenosine sites using extreme gradient boosting system optimized by particle swarm optimizer (2019)
  16. Akbar, Shahid; Hayat, Maqsood: iMethyl-STTNC: identification of N(^6)-methyladenosine sites by extending the idea of SAAC into Chou’s PseAAC to formulate RNA sequences (2018)
  17. Arif, Muhammad; Hayat, Maqsood; Jan, Zahoor: IMem-2LSAAC: a two-level model for discrimination of membrane proteins and their types by extending the notion of SAAC into Chou’s pseudo amino acid composition (2018)
  18. Chiu, Jimmy Ka Ho; Dillon, Tharam S.; Chen, Yi-Ping Phoebe: Large-scale frequent stem pattern mining in RNA families (2018)
  19. Jia, Cangzhi; Yang, Qing; Zou, Quan: NucPosPred: predicting species-specific genomic nucleosome positioning via four different modes of general PseKNC (2018)
  20. Ju, Zhe; Wang, Shi-Yun: Prediction of S-sulfenylation sites using mRMR feature selection and fuzzy support vector machine algorithm (2018)

1 2 next