iPromoter-2L

iPromoter-2L: a two-layer predictor for identifying promoters and their types by multi-window-based PseKNC. MOTIVATION: Being responsible for initiating transaction of a particular gene in genome, promoter is a short region of DNA. Promoters have various types with different functions. Owing to their importance in biological process, it is highly desired to develop computational tools for timely identifying promoters and their types. Such a challenge has become particularly critical and urgent in facing the avalanche of DNA sequences discovered in the postgenomic age. Although some prediction methods were developed, they can only be used to discriminate a specific type of promoters from non-promoters. None of them has the ability to identify the types of promoters. This is due to the facts that different types of promoters may share quite similar consensus sequence pattern, and that the promoters of same type may have considerably different consensus sequences. RESULTS: To overcome such difficulty, using the multi-window-based PseKNC (pseudo K-tuple nucleotide composition) approach to incorporate the short-, middle-, and long-range sequence information, we have developed a two-layer seamless predictor named as ’iPromoter-2 L’. The first layer serves to identify a query DNA sequence as a promoter or non-promoter, and the second layer to predict which of the following six types the identified promoter belongs to: σ24, σ28, σ32, σ38, σ54 and σ70. AVAILABILITY AND IMPLEMENTATION: For the convenience of most experimental scientists, a user-friendly and publicly accessible web-server for the powerful new predictor has been established at http://bioinformatics.hitsz.edu.cn/iPromoter-2L/. It is anticipated that iPromoter-2 L will become a very useful high throughput tool for genome analysis.


References in zbMATH (referenced in 23 articles )

Showing results 1 to 20 of 23.
Sorted by year (citations)

1 2 next

  1. Sun, Ang; Xiao, Xuan; Xu, Zhaochun: iPTT(2L)-CNN: a two-layer predictor for identifying promoters and their types in plant genomes by convolutional neural network (2021)
  2. Ahmad, Jamal; Hayat, Maqsood: MFSC: multi-voting based feature selection for classification of Golgi proteins by adopting the general form of Chou’s PseAAC components (2019)
  3. Chen, Guodong; Cao, Man; Yu, Jialin; Guo, Xinyun; Shi, Shaoping: Prediction and functional analysis of prokaryote lysine acetylation site by incorporating six types of features into Chou’s general PseAAC (2019)
  4. Hussain, Waqar; Khan, Yaser Daanial; Rasool, Nouman; Khan, Sher Afzal; Chou, Kuo-Chen: SPrenylC-PseAAC: a sequence-based model developed via Chou’s 5-steps rule and general PseAAC for identifying S-prenylation sites in proteins (2019)
  5. Jia, Jianhua; Li, Xiaoyan; Qiu, Wangren; Xiao, Xuan; Chou, Kuo-Chen: iPPI-PseAAC(CGR): identify protein-protein interactions by incorporating chaos game representation into PseAAC (2019)
  6. Khan, Yaser Daanial; Jamil, Mehreen; Hussain, Waqar; Rasool, Nouman; Khan, Sher Afzal; Chou, Kuo-Chen: pSSbond-PseAAC: prediction of disulfide bonding sites by integration of PseAAC and statistical moments (2019)
  7. Lu, Fuhua; Zhu, Maoshu; Lin, Ying; Zhong, Hongbin; Cai, Lei; He, Lin; Chou, Kuo-Chen: The preliminary efficacy evaluation of the CTLA-4-ig treatment against lupus nephritis through \textitin-silico analyses (2019)
  8. Pan, Yi; Wang, Shiyuan; Zhang, Qi; Lu, Qianzi; Su, Dongqing; Zuo, Yongchun; Yang, Lei: Analysis and prediction of animal toxins by various Chou’s pseudo components and reduced amino acid compositions (2019)
  9. Tahir, Muhammad; Tayara, Hilal; Chong, Kil To: iRNA-PseKNC(2methyl): identify RNA 2’-O-methylation sites by convolution neural network and Chou’s pseudo components (2019)
  10. Tian, Baoguang; Wu, Xue; Chen, Cheng; Qiu, Wenying; Ma, Qin; Yu, Bin: Predicting protein-protein interactions by fusing various Chou’s pseudo components and using wavelet denoising approach (2019)
  11. Wang, Lidong; Zhang, Ruijun; Mu, Yashuang: Fu-SulfPred: identification of protein S-sulfenylation sites by fusing forests via Chou’s general PseAAC (2019)
  12. Zhao, Xiaowei; Zhang, Ye; Ning, Qiao; Zhang, Hongrui; Ji, Jinchao; Yin, Minghao: Identifying N(^6)-methyladenosine sites using extreme gradient boosting system optimized by particle swarm optimizer (2019)
  13. Arif, Muhammad; Hayat, Maqsood; Jan, Zahoor: IMem-2LSAAC: a two-level model for discrimination of membrane proteins and their types by extending the notion of SAAC into Chou’s pseudo amino acid composition (2018)
  14. Cheng, Xiang; Xiao, Xuan; Chou, Kuo-Chen: pLoc_bal-mGneg: predict subcellular localization of Gram-negative bacterial proteins by quasi-balancing training dataset and general PseAAC (2018)
  15. Chiu, Jimmy Ka Ho; Dillon, Tharam S.; Chen, Yi-Ping Phoebe: Large-scale frequent stem pattern mining in RNA families (2018)
  16. Jia, Cangzhi; Yang, Qing; Zou, Quan: NucPosPred: predicting species-specific genomic nucleosome positioning via four different modes of general PseKNC (2018)
  17. Ju, Zhe; Wang, Shi-Yun: Prediction of S-sulfenylation sites using mRMR feature selection and fuzzy support vector machine algorithm (2018)
  18. Liang, Yunyun; Zhang, Shengli: Identify Gram-negative bacterial secreted protein types by incorporating different modes of PSSM into Chou’s general PseAAC via Kullback-Leibler divergence (2018)
  19. Mei, Juan; Fu, Yi; Zhao, Ji: Analysis and prediction of ion channel inhibitors by using feature selection and Chou’s general pseudo amino acid composition (2018)
  20. Qiu, Wenying; Li, Shan; Cui, Xiaowen; Yu, Zhaomin; Wang, Minghui; Du, Junwei; Peng, Yanjun; Yu, Bin: Predicting protein submitochondrial locations by incorporating the pseudo-position specific scoring matrix into the general Chou’s pseudo-amino acid composition (2018)

1 2 next