Dedalus

Dedalus: A flexible pseudo-spectral framework for solving partial differential equations. Dedalus solves differential equations using spectral methods. It’s open-source, written in Python, and MPI-parallelized. We develop and use Dedalus to study fluid dynamics, but it’s designed to solve initial-value, boundary-value, and eigenvalue problems involving nearly arbitrary equations sets. You build a spectrally-representable domain, symbolically specify equations and boundary conditions, select a numerical solver, and go


References in zbMATH (referenced in 21 articles )

Showing results 1 to 20 of 21.
Sorted by year (citations)

1 2 next

  1. Cao, Yu; Jolly, Michael S.; Titi, Edriss S.; Whitehead, Jared P.: Algebraic bounds on the Rayleigh-Bénard attractor (2021)
  2. Gutleb, Timon S.: A fast sparse spectral method for nonlinear integro-differential Volterra equations with general kernels (2021)
  3. Hester, Eric W.; Vasil, Geoffrey M.; Burns, Keaton J.: Improving accuracy of volume penalised fluid-solid interactions (2021)
  4. Jeffrey S. Oishi, Keaton J. Burns, S. E. Clark, Evan H. Anders, Benjamin P. Brown, Geoffrey M. Vasil, Daniel Lecoanet: eigentools: A Python package for studying differential eigenvalue problems with an emphasis on robustness (2021) not zbMATH
  5. Navid C. Constantinou; Gregory LeClaire Wagner; Lia Siegelman; Brodie C. Pearson; André Palóczy: GeophysicalFlows.jl: Solvers for geophysical fluid dynamics problems in periodic domains on CPUs GPUs (2021) not zbMATH
  6. Yassin, Houssam: Normal modes with boundary dynamics in geophysical fluids (2021)
  7. Ali Ramadhan; Gregory L. Wagner; Chris Hill; Jean-Michel Campin; Valentin Churavy; Tim Besard; Andre Souza; Alan Edelman; Raffaele Ferrari; John Marshall: Oceananigans.jl: Fast and friendly geophysical uid dynamics on GPUs (2020) not zbMATH
  8. Bhamidipati, Neeraja; Woods, Andrew W.: Shear generation in a confined, composite layer of cross-bedded porous rock (2020)
  9. Bhamidipati, Neeraja; Woods, Andrew W.: Boundary-induced shear and tracer transport in heterogeneous porous rock (2020)
  10. Boullé, Nicolas; Townsend, Alex: Computing with functions in the ball (2020)
  11. Carlson, Elizabeth; Hudson, Joshua; Larios, Adam: Parameter recovery for the 2 dimensional Navier-Stokes equations via continuous data assimilation (2020)
  12. Farhat, A.; Glatt-Holtz, N. E.; Martinez, V. R.; McQuarrie, S. A.; Whitehead, J. P.: Data assimilation in large Prandtl Rayleigh-Bénard convection from thermal measurements (2020)
  13. Hester, Eric W.; Couston, Louis-Alexandre; Favier, Benjamin; Burns, Keaton J.; Vasil, Geoffrey M.: Improved phase-field models of melting and dissolution in multi-component flows (2020)
  14. James M. Stone, Kengo Tomida, Christopher J. White, Kyle G. Felker: The Athena++ Adaptive Mesh Refinement Framework: Design and Magnetohydrodynamic Solvers (2020) arXiv
  15. Rocha, Cesar B.; Bossy, Thomas; Llewellyn Smith, Stefan G.; Young, William R.: Improved bounds on horizontal convection (2020)
  16. Supekar, Rohit; Heinonen, Vili; Burns, Keaton J.; Dunkel, Jörn: Linearly forced fluid flow on a rotating sphere (2020)
  17. Currie, L. K.; Tobias, S. M.: Convection-driven kinematic dynamos with a self-consistent shear flow (2019)
  18. Ashwin Vishnu Mohanan; Cyrille Bonamy; Miguel Calpe Linares; Pierre Augier: FluidSim: modular, object-oriented Python package for high-performance CFD simulations (2018) arXiv
  19. Balci, N.; Isenberg, A. M.; Jolly, M. S.: Turbulence in vertically averaged convection (2018)
  20. Couston, Louis-Alexandre; Lecoanet, Daniel; Favier, Benjamin; Le Bars, Michael: The energy flux spectrum of internal waves generated by turbulent convection (2018)

1 2 next