QuasarNET

QuasarNET: Human-level spectral classification and redshifting with Deep Neural Networks. We introduce QuasarNET, a deep convolutional neural network that performs classification and redshift estimation of astrophysical spectra with human-expert accuracy. We pose these two tasks as a emph{feature detection} problem: presence or absence of spectral features determines the class, and their wavelength determines the redshift, very much like human-experts proceed. When ran on BOSS data to identify quasars through their emission lines, QuasarNET defines a sample 99.51±0.03% pure and 99.52±0.03% complete, well above the requirements of many analyses using these data. QuasarNET significantly reduces the problem of line-confusion that induces catastrophic redshift failures to below 0.2%. We also extend QuasarNET to classify spectra with broad absorption line (BAL) features, achieving an accuracy of 98.0±0.4% for recognizing BAL and 97.0±0.2% for rejecting non-BAL quasars. QuasarNET is trained on data of low signal-to-noise and medium resolution, typical of current and future astrophysical surveys, and could be easily applied to classify spectra from current and upcoming surveys such as eBOSS, DESI and 4MOST.

Keywords for this software

Anything in here will be replaced on browsers that support the canvas element


References in zbMATH (referenced in 1 article , 1 standard article )

Showing result 1 of 1.
Sorted by year (citations)

  1. Nicolas Busca; Christophe Balland: QuasarNET: Human-level spectral classification and redshifting with Deep Neural Networks (2018) arXiv