COUNT
R package COUNT: Functions, Data and Code for Count Data. Functions, data and code for Hilbe, J.M. 2011. Negative Binomial Regression, 2nd Edition (Cambridge University Press) and Hilbe, J.M. 2014. Modeling Count Data (Cambridge University Press).
Keywords for this software
References in zbMATH (referenced in 59 articles )
Showing results 1 to 20 of 59.
Sorted by year (- Li, Moming; Diao, Guoqing: On stratified density ratio models (2022)
- Zhang, Huiming; Jia, Jinzhu: Elastic-net regularized high-dimensional negative binomial regression: consistency and weak signal detection (2022)
- Bagchi, Aniruddha; Paul, Jomon A.: National security vs. human rights: a game theoretic analysis of the tension between these objectives (2021)
- Berger, Moritz; Tutz, Gerhard: Transition models for count data: a flexible alternative to fixed distribution models (2021)
- Gao, Guangyuan; Meng, Shengwang; Shi, Yanlin: Dispersion modelling of outstanding claims with double Poisson regression models (2021)
- Ghorbani Gholiabad, Somayeh; Moghimbeigi, Abbas; Faradmal, Javad; Baghestani, Ahmad Reza: A multilevel zero-inflated Conway-Maxwell type negative binomial model for analysing clustered count data (2021)
- Peyhardi, Jean; Fernique, Pierre; Durand, Jean-Baptiste: Splitting models for multivariate count data (2021)
- Wick, Felix; Kerzel, Ulrich; Hahn, Martin; Wolf, Moritz; Singhal, Trapti; Stemmer, Daniel; Ernst, Jakob; Feindt, Michael: Demand forecasting of individual probability density functions with machine learning (2021)
- Daghyani, Masoud; Zamzami, Nuha; Bouguila, Nizar: Toward an efficient computation of log-likelihood functions in statistical inference: overdispersed count data clustering (2020)
- Hwang, Wen-Han; Blakey, Rachel V.; Stoklosa, Jakub: Right-censored mixed Poisson count models with detection times (2020)
- Jourdain, N. O. A. S.; Cole, D. J.; Ridout, M. S.; Rowcliffe, J. Marcus: Statistical development of animal density estimation using random encounter modelling (2020)
- Kowal, Daniel R.; Canale, Antonio: Simultaneous transformation and rounding (STAR) models for integer-valued data (2020)
- Lemonte, Artur J.; Moreno-Arenas, Germán; Castellares, Fredy: Zero-inflated Bell regression models for count data (2020)
- Rydén, Jesper: On features of fugue subjects. A comparison of J. S. Bach and later composers (2020)
- Weißbach, Rafael; Radloff, Lucas: Consistency for the negative binomial regression with fixed covariate (2020)
- Amiri, Mohammad Moqaddasi; Tapak, Leili; Faradmal, Javad: A mixed-effects least square support vector regression model for three-level count data (2019)
- Borges, Patrick; Godoi, Luciana G.: Pólya-Aeppli regression model for overdispersed count data (2019)
- Çetinkaya, Merve Kandemir; Kaçıranlar, Selahattin: Improved two-parameter estimators for the negative binomial and Poisson regression models (2019)
- Kim, Jeonghwan; Lee, Woojoo: On testing the hidden heterogeneity in negative binomial regression models (2019)
- Koyama, Shinsuke; Fujiwara, Yoshi: Modeling event cascades using networks of additive count sequences (2019)