Pyglrm

Pyglrm is a python package for modeling and fitting generalized low rank models (GLRMs), based on the Julia package LowRankModels.jl. GLRMs model a data array by a low rank matrix, and include many well known models in data analysis, such as principal components analysis (PCA), matrix completion, robust PCA, nonnegative matrix factorization, k-means, and many more.


References in zbMATH (referenced in 30 articles , 1 standard article )

Showing results 1 to 20 of 30.
Sorted by year (citations)

1 2 next

  1. Abdolali, Maryam; Gillis, Nicolas: Simplex-structured matrix factorization: sparsity-based identifiability and provably correct algorithms (2021)
  2. Lin, Kevin Z.; Lei, Jing; Roeder, Kathryn: Exponential-family embedding with application to cell developmental trajectories for single-cell RNA-seq data (2021)
  3. Bossmann, Florian; Ma, Jianwei: Enhanced image approximation using shifted rank-1 reconstruction (2020)
  4. Chen, Yunxiao; Li, Xiaoou; Zhang, Siliang: Structured latent factor analysis for large-scale data: identifiability, estimability, and their implications (2020)
  5. Galuzzi, B. G.; Giordani, I.; Candelieri, A.; Perego, R.; Archetti, F.: Hyperparameter optimization for recommender systems through Bayesian optimization (2020)
  6. Hong, David; Kolda, Tamara G.; Duersch, Jed A.: Generalized canonical polyadic tensor decomposition (2020)
  7. Kallus, Nathan; Udell, Madeleine: Dynamic assortment personalization in high dimensions (2020)
  8. Landgraf, Andrew J.; Lee, Yoonkyung: Dimensionality reduction for binary data through the projection of natural parameters (2020)
  9. Li, Xinrong; Xiu, Naihua; Zhou, Shenglong: Matrix optimization over low-rank spectral sets: stationary points and local and global minimizers (2020)
  10. Lumbreras, Alberto; Filstroff, Louis; Févotte, Cédric: Bayesian mean-parameterized nonnegative binary matrix factorization (2020)
  11. Robin, Geneviève; Klopp, Olga; Josse, Julie; Moulines, Éric; Tibshirani, Robert: Main effects and interactions in mixed and incomplete data frames (2020)
  12. Shen, Rui; Meng, Zhiqing; Jiang, Min: Smoothing partially exact penalty function of biconvex programming (2020)
  13. Sportisse, Aude; Boyer, Claire; Josse, Julie: Imputation and low-rank estimation with missing not at random data (2020)
  14. Alaya, Mokhtar Z.; Klopp, Olga: Collective matrix completion (2019)
  15. Bai, Jushan; Ng, Serena: Rank regularized estimation of approximate factor models (2019)
  16. Balcan, Maria-Florina; Liang, Yingyu; Song, Zhao; Woodruff, David P.; Zhang, Hongyang: Non-convex matrix completion and related problems via strong duality (2019)
  17. Daneshmand, Amir; Sun, Ying; Scutari, Gesualdo; Facchinei, Francisco; Sadler, Brian M.: Decentralized dictionary learning over time-varying digraphs (2019)
  18. Driggs, Derek; Becker, Stephen; Aravkin, Aleksandr: Adapting regularized low-rank models for parallel architectures (2019)
  19. Gillis, Nicolas; Shitov, Yaroslav: Low-rank matrix approximation in the infinity norm (2019)
  20. Ungun, Baris; Xing, Lei; Boyd, Stephen: Real-time radiation treatment planning with optimality guarantees via cluster and bound methods (2019)

1 2 next