Schur is a stand alone C program for interactively calculating properties of Lie groups and symmetric functions. Schur has been designed to answer questions of relevance to a wide range of problems of special interest to chemists, mathematicians and physicists - particularly for persons who need specific knowledge relating to some aspect of Lie groups or symmetric functions and yet do not wish to be encumbered with complex algorithms. The objective of Schur is to supply results with the complexity of the algorithms hidden from view so that the user can effectively use Schur as a scratch pad, obtaining a result and then using that result to derive new results in a fully interactive manner. Schur can be used as a tool for calculating branching rules, Kronecker products, Casimir invariants, dimensions, plethysms, S-function operations, Young diagrams and their hook lengths etc.

References in zbMATH (referenced in 27 articles , 2 standard articles )

Showing results 1 to 20 of 27.
Sorted by year (citations)

1 2 next

  1. Monical, Cara; Tokcan, Neriman; Yong, Alexander: Newton polytopes in algebraic combinatorics (2019)
  2. Jarvis, Peter D.; Ellinas, Demosthenes: Algebraic random walks in the setting of symmetric functions (2017)
  3. Ballantine, Cristina M.; Hallahan, William T.: Stability of coefficients in the Kronecker product of a hook and a rectangle (2016)
  4. Salazar, R.; Téllez, G.: Exact energy computation of the one component plasma on a sphere for even values of the coupling parameter (2016)
  5. Ballantine, Cristina; Orellana, Rosa: Schur-positivity in a square (2014)
  6. Petrescu, Alexandru; Song, H. Francis; Rachel, Stephan; Ristivojevic, Zoran; Flindt, Christian; Laflorencie, Nicolas; Klich, Israel; Regnault, Nicolas; Le Hur, Karyn: Fluctuations and entanglement spectrum in quantum Hall states (2014)
  7. Ballantine, C.: Powers of the Vandermonde determinant, Schur functions and recursive formulas (2012)
  8. Téllez, Gabriel; Forrester, Peter J.: Expanded Vandermonde powers and sum rules for the two-dimensional one-component plasma (2012)
  9. Téllez, Gabriel; Trizac, Emmanuel: A two-dimensional one component plasma and a test charge: polarization effects and effective potential (2012)
  10. Butelle, Franck; Hivert, Florent; Mayero, Micaela; Toumazet, Frédéric: Formal proof of SCHUR conjugate function (2010)
  11. Luque, Jean-Gabriel: Macdonald polynomials at (t=q^k) (2010)
  12. Boussicault, A.; Luque, J-G; Tollu, C.: Hyperdeterminantal computation for the Laughlin wavefunction (2009)
  13. Belbachir, H.; Boussicault, A.; Luque, J.-G.: Hankel hyperdeterminants, rectangular Jack polynomials and even powers of the Vandermonde (2008)
  14. Sumner, J. G.; Charleston, M. A.; Jermiin, L. S.; Jarvis, P. D.: Markov invariants, plethysms, and phylogenetics (2008)
  15. Haque, Masudul; Zozulya, Oleksandr; Schoutens, Kareljan: Entanglement entropy in fermionic Laughlin states (2007)
  16. King, R. C.; Toumazet, F.; Wybourne, B. G.: The square of the Vandermonde determinant and its (q)-generalization (2004)
  17. Šamaj, L.: Is the two-dimensional one-component plasma exactly solvable? (2004)
  18. Kalinay, P.; Markoś, P.; Šanaj, L.; Travěnec, I.: The sixth-moment sum rule for the pair correlations of the two-dimensional one-component plasma: Exact result (2000)
  19. Louck, James D.: Power of a determinant with two physical applications (1999)
  20. Christensen, Steven M.: Large scale tensor analysis by computer (1998)

1 2 next