Vampire 8.0, [RV02,Vor05] is an automatic theorem prover for first-order classical logic. It consists of a shell and a kernel. The kernel implements the calculi of ordered binary resolution and superposition for handling equality. The splitting rule and negative equality splitting are simulated by the introduction of new predicate definitions and dynamic folding of such definitions. A number of standard redundancy criteria and simplification techniques are used for pruning the search space: subsumption, tautology deletion (optionally modulo commutativity), subsumption resolution, rewriting by ordered unit equalities, and a lightweight basicness. The CASC version uses the Knuth-Bendix ordering. The lexicographic path ordering has been implemented recently but will not be used for this CASC. A number of efficient indexing techniques are used to implement all major operations on sets of terms and clauses. Run-time algorithm specialisation is used to accelerate some costly operations, e.g., checks of ordering constraints. Although the kernel of the system works only with clausal normal forms, the shell accepts a problem in the full first-order logic syntax, clausifies it and performs a number of useful transformations before passing the result to the kernel. When a theorem is proved, the system produces a verifiable proof, which validates both the clausification phase and the refutation of the CNF.

References in zbMATH (referenced in 267 articles , 1 standard article )

Showing results 1 to 20 of 267.
Sorted by year (citations)

1 2 3 ... 12 13 14 next

  1. Bentkamp, Alexander; Blanchette, Jasmin; Cruanes, Simon; Waldmann, Uwe: Superposition for lambda-free higher-order logic (2021)
  2. Bentkamp, Alexander; Blanchette, Jasmin; Tourret, Sophie; Vukmirović, Petar; Waldmann, Uwe: Superposition with lambdas (2021)
  3. Bromberger, Martin; Dragoste, Irina; Faqeh, Rasha; Fetzer, Christof; Krötzsch, Markus; Weidenbach, Christoph: A Datalog hammer for supervisor verification conditions modulo simple linear arithmetic (2021)
  4. Chvalovský, Karel; Jakubův, Jan; Olšák, Miroslav; Urban, Josef: Learning theorem proving components (2021)
  5. Claessen, Koen; Lillieström, Ann: Handling transitive relations in first-order automated reasoning (2021)
  6. Duarte, André; Korovin, Konstantin: AC simplifications and closure redundancies in the superposition calculus (2021)
  7. Erkens, Rick; Laveaux, Maurice: Adaptive non-linear pattern matching automata (2021)
  8. Färber, Michael; Kaliszyk, Cezary; Urban, Josef: Machine learning guidance for connection tableaux (2021)
  9. Fontaine, Pascal; Schurr, Hans-Jörg: Quantifier simplification by unification in SMT (2021)
  10. Goertzel, Zarathustra A.; Chvalovský, Karel; Jakubův, Jan; Olšák, Miroslav; Urban, Josef: Fast and slow enigmas and parental guidance (2021)
  11. Hajdu, Márton; Hozzová, Petra; Kovács, Laura; Schoisswohl, Johannes; Voronkov, Andrei: Inductive benchmarks for automated reasoning (2021)
  12. Holden, Edvard K.; Korovin, Konstantin: Heterogeneous heuristic optimisation and scheduling for first-order theorem proving (2021)
  13. Hozzová, Petra; Kovács, Laura; Rath, Jakob: Automated generation of exam sheets for automated deduction (2021)
  14. Hozzová, Petra; Kovács, Laura; Voronkov, Andrei: Integer induction in saturation (2021)
  15. Navarro, Marisa; Orejas, Fernando; Pino, Elvira; Lambers, Leen: A navigational logic for reasoning about graph properties (2021)
  16. Niemetz, Aina; Preiner, Mathias; Reynolds, Andrew; Zohar, Yoni; Barrett, Clark; Tinelli, Cesare: Towards satisfiability modulo parametric bit-vectors (2021)
  17. Rawson, Michael; Reger, Giles: Eliminating models during model elimination (2021)
  18. Rawson, Michael; Reger, Giles: \textsflazyCoP: lazy paramodulation meets neurally guided search (2021)
  19. Reger, Giles; Schoisswohl, Johannes; Voronkov, Andrei: Making theory reasoning simpler (2021)
  20. Steen, Alexander; Benzmüller, Christoph: Extensional higher-order paramodulation in Leo-III (2021)

1 2 3 ... 12 13 14 next