Derive is no longer available as a separate program, but the Derive code is now incorporated into TI-Nspire CAS software Derive 6 is a powerful system for doing symbolic and numeric mathematics on your PC. It processes algebraic variables, expressions, equations, functions, vectors, matrices and Boolean expressions like a scientific calculator processes numbers. It’s useful from KS3 to University and beyond. Problems in the fields of arithmetic, algebra, trigonometry, calculus, linear algebra, and propositional calculus can be solved with the click of the mouse. Make plots of mathematical expressions in two and three dimensions using various coordinate systems. By its seamless integration of numeric, algebraic and graphic capabilities, Derive makes an excellent tool for learning, teaching and doing mathematics.

References in zbMATH (referenced in 65 articles , 1 standard article )

Showing results 41 to 60 of 65.
Sorted by year (citations)
  1. Berry, J. S.; Graham, E.; Watkins, A. J. P.: Learning mathematics through DERIVE (1996)
  2. Glynn, Jerry: Exploring Math from algebra to calculus with DERIVE (1996)
  3. Marlewski, Adam; Kołodziej, Jan: DERIVE assistance to the collocation method for solving potential flow problems (1996)
  4. Hill, Robert J.; Keagy, Thomas A.: Elementary linear algebra with DERIVE. An integrated text (1995)
  5. Johnson, Jerry; Evans, Benny: Discovering calculus with DERIVE. (1995)
  6. Johnson, J.; Evans, B.: Discovering calculus with Derive (1995) MathEduc
  7. Kutzler, Bernhard: The teaching of mathematics with DERIVE (1995)
  8. Schwardmann, Ulrich: Computer algebra systems (1995)
  9. Šetrajčić, J. P.; Pantić, M.; Lazarev, S.; Mirjanić, D. Lj.: Green’s functions in the theory of crystals with broken symmetry (1995)
  10. Townend, M. Stewart; Pountney, David C.: Learning modelling with DERIVE (1995)
  11. Waits, B. K.; Demana, F.: TI-92, the hand-held revolution in computer enhanced maths teaching and learning (1995) MathEduc
  12. Costello, Patrick: Computing Jordan canonical forms (1994)
  13. Gerald, Curtis F.; Wheatley, Patrick O.: Applied numerical analysis. (1994)
  14. Grabinger, B. F. A.: De Moivre, Laplace and Derive (1994) MathEduc
  15. Herrmann, C.: DERIVE. Einführung mit praktischen Anwendungsbeispielen. (DERIVE. Introduction with examples of practicle applications) (1994)
  16. Koepf, Wolfram: Taylor polynomials of implicit functions, of inverse functions, and of solutions of ordinary differential equations (1994)
  17. Koepf, Wolfram: Higher analysis with DERIVE (1994)
  18. Kutzler, Bernhard: Mathematics on the PC. Introduction to DERIVE. A book for teachers and students (1994)
  19. Berry, John S.; Graham, Edward; Watkins, Antony J. P.: Learning mathematics through DERIVE (1993)
  20. Koepf, Wolfram; Ben-Israel, Adi; Gilbert, Bob: Mathematik mit DERIVE. Mit 80 Abb., zahlr. Übungsaufgaben und Mustersitzungen sowie einer Einführung in DERIVE (1993)