SuperLU is a general purpose library for the direct solution of large, sparse, nonsymmetric systems of linear equations on high performance machines. The library is written in C and is callable from either C or Fortran. The library routines will perform an LU decomposition with partial pivoting and triangular system solves through forward and back substitution. The LU factorization routines can handle non-square matrices but the triangular solves are performed only for square matrices. The matrix columns may be preordered (before factorization) either through library or user supplied routines. This preordering for sparsity is completely separate from the factorization. Working precision iterative refinement subroutines are provided for improved backward stability. Routines are also provided to equilibrate the system, estimate the condition number, calculate the relative backward error, and estimate error bounds for the refined solutions.

This software is also referenced in ORMS.

References in zbMATH (referenced in 90 articles , 1 standard article )

Showing results 21 to 40 of 90.
Sorted by year (citations)
  1. Jacquelin, Mathias; Lin, Lin; Yang, Chao: \textttPselinv-- a distributed memory parallel algorithm for selected inversion, the symmetric case (2017)
  2. Peters, Franciane Conceição; Fontes Junior, Edivaldo Figueiredo; Mansur, Webe João; Soares Filho, Djalma Manoel; da Silva Garcia Monteiro, Cid; Carvalho, Pedro: An adaptive meshless parameterization for full waveform inversion (2017)
  3. Vašatová, Alena; Tomčala, Jiří; Sojka, Radim; Pecha, Marek; Kružík, Jakub; Horák, David; Hapla, Václav; Čermák, Martin: Parallel strategies for solving the FETI coarse problem in the PERMON toolbox. (2017)
  4. Xin, Zixing; Xia, Jianlin; de Hoop, Maarten V.; Cauley, Stephen; Balakrishnan, Venkataramanan: A distributed-memory randomized structured multifrontal method for sparse direct solutions (2017)
  5. Feldman, Yuri; Gulberg, Yosef: An extension of the immersed boundary method based on the distributed Lagrange multiplier approach (2016)
  6. Gholami, Amir; Malhotra, Dhairya; Sundar, Hari; Biros, George: FFT, FMM, or multigrid? A comparative study of state-of-the-art Poisson solvers for uniform and nonuniform grids in the unit cube (2016)
  7. Mathias Jacquelin, Yili Zheng, Esmond Ng, Katherine Yelick: An Asynchronous Task-based Fan-Both Sparse Cholesky Solver (2016) arXiv
  8. Wang, Shen; Li, Xiaoye S.; Rouet, François-Henry; Xia, Jianlin; De Hoop, Maarten V.: A parallel geometric multifrontal solver using hierarchically semiseparable structure (2016)
  9. Amestoy, Patrick; Ashcraft, Cleve; Boiteau, Olivier; Buttari, Alfredo; L’Excellent, Jean-Yves; Weisbecker, Clément: Improving multifrontal methods by means of block low-rank representations (2015)
  10. Casoni, E.; Jérusalem, A.; Samaniego, C.; Eguzkitza, B.; Lafortune, P.; Tjahjanto, D. D.; Sáez, X.; Houzeaux, G.; Vázquez, M.: Alya: computational solid mechanics for supercomputers (2015)
  11. Hogg, Jonathan; Scott, Jennifer: On the use of suboptimal matchings for scaling and ordering sparse symmetric matrices. (2015)
  12. Pavarino, L. F.; Scacchi, S.; Zampini, S.: Newton-Krylov-BDDC solvers for nonlinear cardiac mechanics (2015)
  13. Praetorius, Simon; Voigt, Axel: Development and analysis of a block-preconditioner for the phase-field crystal equation (2015)
  14. Trobec, Roman; Kosec, Gregor: Parallel scientific computing. Theory, algorithms, and applications of mesh based and meshless methods (2015)
  15. Chen, Rongliang; Cai, Xiao-Chuan: A parallel two-level domain decomposition based one-shot method for shape optimization problems (2014)
  16. Guo, Shu; Ghosh, Somnath: A finite element model for coupled 3D transient electromagnetic and structural dynamics problems (2014)
  17. Sanchez, Eduardo J.; Paolini, Christopher P.; Castillo, Jose E.: The mimetic methods toolkit: an object-oriented API for mimetic finite differences (2014)
  18. Suzuki, A.; Roux, F.-X.: A dissection solver with kernel detection for symmetric finite element matrices on shared memory computers (2014)
  19. Zhu, Minjie; Scott, Michael H.: Improved fractional step method for simulating fluid-structure interaction using the PFEM (2014)
  20. Lowell, Daniel; Godwin, Jeswin; Holewinski, Justin; Karthik, Deepan; Choudary, Chekuri; Mametjanov, Azamat; Norris, Boyana; Sabin, Gerald; Sadayappan, P.; Sarich, Jason: Stencil-aware GPU optimization of iterative solvers (2013)