FraC
FraC: A new conforming mesh method for discrete fracture networks. The fracture cut (FraC) approach to mesh three-dimensional (3D) discrete fracture networks (DFN) is presented. The considered DFNs consist of a network of planar two-dimensional (2D) fractures sharing intersections that can in turn intersect themselves, resulting in highly complex meshing issues. The key idea of FraC is to decompose each fracture into a set of connected closed contours, with the original intersection traces located at the boundaries of the contours. Thus, intersection segments can be more easily accounted for when building a conforming mesh. Three distinct strategies for intersection points management are also proposed to enhance the quality of resulting meshes. Steady-state single-phase flow simulations are performed to validate the conform meshes obtained using FraC. The results from flow simulations as well as from a mesh quality analysis on a benchmark case show that a flexible AoM strategy (adding or moving intersection points) appears to be the best choice to generate ready-to-run meshes for complex DFN. This approach also allows accounting for tiny features within the fracture networks while keeping a good mesh quality and respecting DFN connectivity. Finally, a scalability of the mesh generator is conducted to assess the performance of the approach.
Keywords for this software
References in zbMATH (referenced in 4 articles , 1 standard article )
Showing results 1 to 4 of 4.
Sorted by year (- Koch, Timo; Gläser, Dennis; Weishaupt, Kilian; Ackermann, Sina; Beck, Martin; Becker, Beatrix; Burbulla, Samuel; Class, Holger; Coltman, Edward; Emmert, Simon; Fetzer, Thomas; Grüninger, Christoph; Heck, Katharina; Hommel, Johannes; Kurz, Theresa; Lipp, Melanie; Mohammadi, Farid; Scherrer, Samuel; Schneider, Martin; Seitz, Gabriele; Stadler, Leopold; Utz, Martin; Weinhardt, Felix; Flemisch, Bernd: DuMu(^\textx 3) -- an open-source simulator for solving flow and transport problems in porous media with a focus on model coupling (2021)
- Berrone, S.; Borio, A.; Vicini, F.: Reliable a posteriori mesh adaptivity in discrete fracture network flow simulations (2019)
- Berrone, S.; Scialò, S.; Vicini, F.: Parallel meshing, discretization, and computation of flow in massive discrete fracture networks (2019)
- Fourno, André; Ngo, Tri-Dat; Noetinger, Benoit; La Borderie, Christian: FraC: a new conforming mesh method for discrete fracture networks (2019)