libeikonal

Ordered line integral methods for solving the eikonal equation. We present a family of fast and accurate Dijkstra-like solvers for the eikonal equation and factored eikonal equation which compute solutions on a regular grid by solving local variational minimization problems. Our methods converge linearly but compute significantly more accurate solutions than competing first order methods. In 3D, we present two different families of algorithms which significantly reduce the number of FLOPs needed to obtain an accurate solution to the eikonal equation. One method employs a fast search using local characteristic directions to prune unnecessary updates, and the other uses the theory of constrained optimization to achieve the same end. The proposed solvers are more efficient than the standard fast marching method in terms of the relationship between error and CPU time. We also modify our method for use with the additively factored eikonal equation, which can be solved locally around point sources to maintain linear convergence. We conduct extensive numerical simulations and provide theoretical justification for our approach. A library that implements the proposed solvers is available on GitHub.