The CHEASE code for toroidal MHD equilibria CHEASE solves the Grad-Shafranov equation for the MHD equilibrium of a Tokamak-like plasma with pressure and current profiles specified by analytic forms or sets of data points. Equilibria marginally stable to ballooning modes or with a prescribed fraction of bootstrap current can be computed. The code provides a mapping to magnetic flux coordinates, suitable for MHD stability calculations or global wave propagation studies. The code computes equilibrium quantities for the stability codes ERATO, MARS, PEST, NOVA-W and XTOR and for the global wave propagation codes LION and PENN (Source:

References in zbMATH (referenced in 17 articles , 1 standard article )

Showing results 1 to 17 of 17.
Sorted by year (citations)

  1. Peng, Zhichao; Tang, Qi; Tang, Xian-Zhu: An adaptive discontinuous Petrov-Galerkin method for the Grad-Shafranov equation (2020)
  2. Drescher, Lukas; Heumann, Holger; Schmidt, Kersten: A high order method for the approximation of integrals over implicitly defined hypersurfaces (2017)
  3. Palha, A.; Koren, B.; Felici, F.: A mimetic spectral element solver for the Grad-Shafranov equation (2016)
  4. Pasquetti, Richard: Comparison of some isoparametric mappings for curved triangular spectral elements (2016)
  5. Ricketson, L. F.; Cerfon, A. J.; Rachh, M.; Freidberg, J. P.: Accurate derivative evaluation for any Grad-Shafranov solver (2016)
  6. Lee, Jungpyo; Cerfon, Antoine: ECOM: A fast and accurate solver for toroidal axisymmetric MHD equilibria (2015)
  7. Pataki, Andras; Cerfon, Antoine J.; Freidberg, Jeffrey P.; Greengard, Leslie; O’Neil, Michael: A fast, high-order solver for the Grad-Shafranov equation (2013)
  8. Sauter, O.; Medvedev, S. Yu.: Tokamak coordinate conventions: COCOS (2013)
  9. Görler, T.; Lapillonne, X.; Brunner, S.; Dannert, T.; Jenko, F.; Merz, F.; Told, D.: The global version of the gyrokinetic turbulence code GENE (2011)
  10. Lütjens, Hinrich; Luciani, Jean-François: XTOR-2F: a fully implicit Newton-Krylov solver applied to nonlinear 3D extended MHD in tokamaks (2010)
  11. Amari, Tahar; Boulbe, Cédric; Boulmezaoud, Tahar Zamène: Computing Beltrami fields (2009)
  12. Peeters, A. G.; Camenen, Y.; Casson, F. J.; Hornsby, W. A.; Snodin, A. P.; Strintzi, D.; Szepesi, G.: The nonlinear gyro-kinetic flux tube code GKW (2009)
  13. Lütjens, Hinrich; Luciani, Jean-François: The XTOR code for nonlinear 3D simulations of MHD instabilities in tokamak plasmas (2008)
  14. Liu, Yueqiang: Constructing plasma response models from full toroidal magnetohydrodynamic computations (2007)
  15. Liu, D. H.; Bondeson, A.: Improved poloidal convergence of the MARS code for MHD stability analysis (1999)
  16. Fivaz, M.; Brunner, S.; de Ridder, G.; Sauter, O.; Tran, T. M.; Vaclavik, J.; Villard, L.; Appert, K.: Finite element approach to global gyrokinetic particle-in-cell simulations using magnetic coordinates (1998)
  17. Lütjens, H.; Bondeson, A.; Sauter, O.: The CHEASE code for toroidal MHD equilibria (1996)