Joint amalgamation of most parsimonious reconciled gene trees. Results: Here, we present the Tree Estimation using Reconciliation (TERA) algorithm, a parsimony based, species tree aware method for gene tree reconstruction based on a scoring scheme combining duplication, transfer and loss costs with an estimate of the sequence likelihood. TERA explores all reconciled gene trees that can be amalgamated from a sample of gene trees. Using a large scale simulated dataset, we demonstrate that TERA achieves the same accuracy as the corresponding probabilistic method while being faster, and outperforms other parsimony-based methods in both accuracy and speed. Running TERA on a set of 1099 homologous gene families from complete cyanobacterial genomes, we find that incorporating knowledge of the species tree results in a two thirds reduction in the number of apparent transfer events. Availability and implementation: The algorithm is implemented in our program TERA, which is freely available from http://mbb.univ-montp2.fr/MBB/download_sources/16__TERA.