SBEED
SBEED: Convergent Reinforcement Learning with Nonlinear Function Approximation. When function approximation is used, solving the Bellman optimality equation with stability guarantees has remained a major open problem in reinforcement learning for decades. The fundamental difficulty is that the Bellman operator may become an expansion in general, resulting in oscillating and even divergent behavior of popular algorithms like Q-learning. In this paper, we revisit the Bellman equation, and reformulate it into a novel primal-dual optimization problem using Nesterov’s smoothing technique and the Legendre-Fenchel transformation. We then develop a new algorithm, called Smoothed Bellman Error Embedding, to solve this optimization problem where any differentiable function class may be used. We provide what we believe to be the first convergence guarantee for general nonlinear function approximation, and analyze the algorithm’s sample complexity. Empirically, our algorithm compares favorably to state-of-the-art baselines in several benchmark control problems.
Keywords for this software
References in zbMATH (referenced in 6 articles )
Showing results 1 to 6 of 6.
Sorted by year (- Liu, Mingrui; Rafique, Hassan; Lin, Qihang; Yang, Tianbao: First-order convergence theory for weakly-convex-weakly-concave min-max problems (2021)
- Ostrovskii, Dmitrii M.; Lowy, Andrew; Razaviyayn, Meisam: Efficient search of first-order Nash equilibria in nonconvex-concave smooth min-max problems (2021)
- Pan, Weiwei; Shen, Jingjing; Xu, Zi: An efficient algorithm for nonconvex-linear minimax optimization problem and its application in solving weighted maximin dispersion problem (2021)
- Zhang, Guodong; Bao, Xuchan; Lessard, Laurent; Grosse, Roger: A unified analysis of first-order methods for smooth games via integral quadratic constraints (2021)
- Hu, Yifan; Chen, Xin; He, Niao: Sample complexity of sample average approximation for conditional stochastic optimization (2020)
- Yu, Huizhen; Mahmood, A. Rupam; Sutton, Richard S.: On generalized Bellman equations and temporal-difference learning (2018)