Spack
The Spack package manager: bringing order to HPC software chaos. Large HPC centers spend considerable time supporting software for thousands of users, but the complexity of HPC software is quickly outpacing the capabilities of existing software management tools. Scientific applications require specific versions of compilers, MPI, and other dependency libraries, so using a single, standard software stack is infeasible. However, managing many configurations is difficult because the configuration space is combinatorial in size. We introduce Spack, a tool used at Lawrence Livermore National Laboratory to manage this complexity. Spack provides a novel, recursive specification syntax to invoke parametric builds of packages and dependencies. It allows any number of builds to coexist on the same system, and it ensures that installed packages can find their dependencies, regardless of the environment. We show through real-world use cases that Spack supports diverse and demanding applications, bringing order to HPC software chaos.
Keywords for this software
References in zbMATH (referenced in 3 articles )
Showing results 1 to 3 of 3.
Sorted by year (- Arndt, Daniel; Bangerth, Wolfgang; Davydov, Denis; Heister, Timo; Heltai, Luca; Kronbichler, Martin; Maier, Matthias; Pelteret, Jean-Paul; Turcksin, Bruno; Wells, David: The \textscdeal.II finite element library: design, features, and insights (2021)
- Hartwig Anzt, Terry Cojean, Yen-Chen Chen, Goran Flegar, Fritz Göbel, Thomas Grützmacher, Pratik Nayak, Tobias Ribizel, Yu-Hsiang Tsai: Ginkgo: A high performance numerical linear algebra library (2020) not zbMATH
- Roberts, Nathan V.: Camellia: a rapid development framework for finite element solvers (2019)