SpinDoctor: a Matlab toolbox for diffusion MRI simulation. The complex transverse water proton magnetization subject to diffusion-encoding magnetic field gradient pulses in a heterogeneous medium can be modeled by the multiple compartment Bloch-Torrey partial differential equation (BTPDE). A mathematical model for the time-dependent apparent diffusion coefficient (ADC), called the H-ADC model, was obtained recently using homogenization techniques on the BTPDE. Under the assumption of negligible water exchange between compartments, the H-ADC model produces the ADC of a diffusion medium from the solution of a diffusion equation (DE) subject to a time-dependent Neumann boundary condition. This paper describes a publicly available Matlab toolbox called SpinDoctor that can be used 1) to solve the BTPDE to obtain the dMRI signal (the toolbox provides a way of robustly fitting the dMRI signal to obtain the fitted ADC); 2) to solve the DE of the H-ADC model to obtain the ADC; 3) a short-time approximation formula for the ADC is also included in the toolbox for comparison with the simulated ADC. The PDEs are solved by P 1 finite elements combined with build-in Matlab routines for solving ordinary differential equations. The finite element mesh generation is performed using an external package called Tetgen that is included in the toolbox. SpinDoctor provides built-in options of including 1) spherical cells with a nucleus; 2) cylindrical cells with a myelin layer; 3) an extra-cellular space (ECS) enclosed either a) in a box or b) in a tight wrapping around the cells; 4) deformation of canonical cells by bending and twisting. 5) permeable membranes for the BT-PDE (the H-ADC assumes negligible permeability). Built-in diffusion-encoding pulse sequences include the Pulsed Gradient Spin Echo and the Oscilating Gradient Spin Echo.

Keywords for this software

Anything in here will be replaced on browsers that support the canvas element