TrafficPredict
TrafficPredict: Trajectory Prediction for Heterogeneous Traffic-Agents. To safely and efficiently navigate in complex urban traffic, autonomous vehicles must make responsible predictions in relation to surrounding traffic-agents (vehicles, bicycles, pedestrians, etc.). A challenging and critical task is to explore the movement patterns of different traffic-agents and predict their future trajectories accurately to help the autonomous vehicle make reasonable navigation decision. To solve this problem, we propose a long short-term memory-based (LSTM-based) realtime traffic prediction algorithm, TrafficPredict. Our approach uses an instance layer to learn instances’ movements and interactions and has a category layer to learn the similarities of instances belonging to the same type to refine the prediction. In order to evaluate its performance, we collected trajectory datasets in a large city consisting of varying conditions and traffic densities. The dataset includes many challenging scenarios where vehicles, bicycles, and pedestrians move among one another. We evaluate the performance of TrafficPredict on our new dataset and highlight its higher accuracy for trajectory prediction by comparing with prior prediction methods.
Keywords for this software
References in zbMATH (referenced in 3 articles )
Showing results 1 to 3 of 3.
Sorted by year (- Prédhumeau, Manon; Mancheva, Lyuba; Dugdale, Julie; Spalanzani, Anne: Agent-based modeling for predicting Pedestrian trajectories around an autonomous vehicle (2022)
- Chandra, Rohan; Bhattacharya, Uttaran; Roncal, Christian; Bera, Aniket; Manocha, Dinesh: RobustTP: End-to-End Trajectory Prediction for Heterogeneous Road-Agents in Dense Traffic with Noisy Sensor Inputs (2019) arXiv
- Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, Oscar Beijbom: nuScenes: A multimodal dataset for autonomous driving (2019) arXiv