Fast-DENSER

Fast-DENSER: Fast Deep Evolutionary Network Structured Representation. This paper introduces a grammar-based general purpose framework for the automatic search and deployment of potentially Deep Artificial Neural Networks (DANNs). The approach is known as Fast Deep Evolutionary Network Structured Representation (Fast-DENSER) and is capable of simultaneously optimising the topology, learning strategy and any other required hyper-parameters (e.g., data pre-processing or augmentation). Fast-DENSER has been successfully applied to numerous object recognition tasks, with the generation of Convolutional Neural Networks (CNNs). The code is developed and tested in Python3, and made available as a library. A simple and easy to follow example is described for the automatic search of CNNs for the Fashion-MNIST benchmark.

Keywords for this software

Anything in here will be replaced on browsers that support the canvas element


References in zbMATH (referenced in 1 article , 1 standard article )

Showing result 1 of 1.
Sorted by year (citations)

  1. Filipe Assunção, Nuno Lourenço, Bernardete Ribeiro, Penousal Machado: Fast-DENSER: Fast Deep Evolutionary Network Structured Representation (2021) not zbMATH