DeepAR
DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks. Probabilistic forecasting, i.e. estimating the probability distribution of a time series’ future given its past, is a key enabler for optimizing business processes. In retail businesses, for example, forecasting demand is crucial for having the right inventory available at the right time at the right place. In this paper we propose DeepAR, a methodology for producing accurate probabilistic forecasts, based on training an auto regressive recurrent network model on a large number of related time series. We demonstrate how by applying deep learning techniques to forecasting, one can overcome many of the challenges faced by widely-used classical approaches to the problem. We show through extensive empirical evaluation on several real-world forecasting data sets accuracy improvements of around 15% compared to state-of-the-art methods.
Keywords for this software
References in zbMATH (referenced in 6 articles , 1 standard article )
Showing results 1 to 6 of 6.
Sorted by year (- Goltsos, Thanos E.; Syntetos, Aris A.; Glock, Christoph H.; Ioannou, George: Inventory -- forecasting: mind the gap (2022)
- David Salinas, Valentin Flunkert, Jan Gasthaus: DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks (2021) arXiv
- Kourentzes, Nikolaos; Athanasopoulos, George: Elucidate structure in intermittent demand series (2021)
- Ma, Shaohui; Fildes, Robert: Retail sales forecasting with meta-learning (2021)
- Moon, Sang Jun; Jeon, Jong-June; Lee, Jason Sang Hun; Kim, Yongdai: Learning multiple quantiles with neural networks (2021)
- Wick, Felix; Kerzel, Ulrich; Hahn, Martin; Wolf, Moritz; Singhal, Trapti; Stemmer, Daniel; Ernst, Jakob; Feindt, Michael: Demand forecasting of individual probability density functions with machine learning (2021)