PersonLab
PersonLab: Person Pose Estimation and Instance Segmentation with a Bottom-Up, Part-Based, Geometric Embedding Model. We present a box-free bottom-up approach for the tasks of pose estimation and instance segmentation of people in multi-person images using an efficient single-shot model. The proposed PersonLab model tackles both semantic-level reasoning and object-part associations using part-based modeling. Our model employs a convolutional network which learns to detect individual keypoints and predict their relative displacements, allowing us to group keypoints into person pose instances. Further, we propose a part-induced geometric embedding descriptor which allows us to associate semantic person pixels with their corresponding person instance, delivering instance-level person segmentations. Our system is based on a fully-convolutional architecture and allows for efficient inference, with runtime essentially independent of the number of people present in the scene. Trained on COCO data alone, our system achieves COCO test-dev keypoint average precision of 0.665 using single-scale inference and 0.687 using multi-scale inference, significantly outperforming all previous bottom-up pose estimation systems. We are also the first bottom-up method to report competitive results for the person class in the COCO instance segmentation task, achieving a person category average precision of 0.417
Keywords for this software
References in zbMATH (referenced in 3 articles )
Showing results 1 to 3 of 3.
Sorted by year (- Mark Weber, Huiyu Wang, Siyuan Qiao, Jun Xie, Maxwell D. Collins, Yukun Zhu, Liangzhe Yuan, Dahun Kim, Qihang Yu, Daniel Cremers, Laura Leal-Taixe, Alan L. Yuille, Florian Schroff, Hartwig Adam, Liang-Chieh Chen: DeepLab2: A TensorFlow Library for Deep Labeling (2021) arXiv
- Sven Kreiss, Lorenzo Bertoni, Alexandre Alahi: OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Temporal Association (2021) arXiv
- Tuyls, Karl; Omidshafiei, Shayegan; Muller, Paul; Wang, Zhe; Connor, Jerome; Hennes, Daniel; Graham, Ian; Spearman, William; Waskett, Tim; Steel, Dafydd; Luc, Pauline; Recasens, Adria; Galashov, Alexandre; Thornton, Gregory; Elie, Romuald; Sprechmann, Pablo; Moreno, Pol; Cao, Kris; Garnelo, Marta; Dutta, Praneet; Valko, Michal; Heess, Nicolas; Bridgland, Alex; Pérolat, Julien; De Vylder, Bart; Eslami, S. M. Ali; Rowland, Mark; Jaegle, Andrew; Munos, Remi; Back, Trevor; Ahamed, Razia; Bouton, Simon; Beauguerlange, Nathalie; Broshear, Jackson; Graepel, Thore; Hassabis, Demis: Game plan: what AI can do for football, and what football can do for AI (2021)