Menu
  • About & Contact
  • Feedback
  • Contribute
  • Help
  • zbMATH

swMATH

swmath-logo
  • Search
  • Advanced search
  • Browse
  • browse software by name
  • browse software by keywords
  • browse software by MSC
  • browse software by types

Manopt.jl

Manopt.jl provides a framework for optimization on manifolds. Based on Manopt and MVIRT, both implemented in Matlab, this toolbox aims to provide an easy access to optimization methods on manifolds for Julia, including example data and visualization methods.

Keywords for this software

Anything in here will be replaced on browsers that support the canvas element

  • Riemannian manifolds
  • total variation
  • Riemannian optimization
  • Riemannian manifold
  • Julia
  • exponential map
  • semismooth Newton method
  • arXiv_cs.MS
  • higher-order optimization
  • sequential optimality conditions
  • Fenchel conjugate function
  • Fenchel duality theory
  • convex analysis
  • global convergence
  • logarithmic map
  • scientific computing
  • Journal of Open Source Software
  • Mathematical Software
  • Manifolds
  • Manifolds.jl
  • nonlinear spaces
  • Optimization
  • optimization on manifolds
  • approximate KKT conditions
  • nonsmooth optimization
  • Manopt.jl
  • arXiv_publication
  • chambolle-pock algorithm
  • Hadamard manifold
  • primal-dual algorithm

  • URL: manoptjl.org/stable/
  • Code
  • InternetArchive
  • Authors: Ronny Bergmann
  • Dependencies: Julia

  • Add information on this software.


  • Related software:
  • Manopt
  • Pymanopt
  • ROPTLIB
  • Julia
  • RecPF
  • Manifolds.jl
  • McTorch
  • MADMM
  • UCI-ml
  • geomstats
  • Show more...
  • Camino
  • Geoopt
  • MVIRT
  • ManifoldOptim
  • Show less...

References in zbMATH (referenced in 5 articles , 1 standard article )

Showing results 1 to 5 of 5.
y Sorted by year (citations)

  1. Ronny Bergmann: Manopt.jl: Optimization on Manifolds in Julia (2022) not zbMATH
  2. Yamakawa, Yuya; Sato, Hiroyuki: Sequential optimality conditions for nonlinear optimization on Riemannian manifolds and a globally convergent augmented Lagrangian method (2022)
  3. Bergmann, Ronny; Herzog, Roland; Silva Louzeiro, Maurício; Tenbrinck, Daniel; Vidal-Núñez, José: Fenchel duality theory and a primal-dual algorithm on Riemannian manifolds (2021)
  4. Diepeveen, Willem; Lellmann, Jan: An inexact semismooth Newton method on Riemannian manifolds with application to duality-based total variation denoising (2021)
  5. Seth D. Axen, Mateusz Baran, Ronny Bergmann, Krzysztof Rzecki: Manifolds.jl: An Extensible Julia Framework for Data Analysis on Manifolds (2021) arXiv

  • Article statistics & filter:

  • Search for articles
  • MSC classification / top
    • Top MSC classes
      • 47 Operator theory
      • 49 Calculus of variations...
      • 53 Differential geometry
      • 90 Optimization

  • Publication year
    • 2010 - today
    • 2005 - 2009
    • 2000 - 2004
    • before 2000
  • Terms & Conditions
  • Imprint
  • Privacy Policy