VAC: Versatile Advection Code. The Versatile Advection Code is a general tool for solving hydrodynamical and magnetohydrodynamical problems arising in astrophysics. The software package uses modern high-resolution shock-capturing numerical schemes to solve a hyperbolic system of partial differential equations with additional non-hyperbolic source terms. Due to its modular structure the code can be easily configured for different sets of equations. Simulations can be done on a general 1, 2 or 3D structured grid. In 1D and 2D both axial and slab symmetry can be assumed for the ignored dimension(s). The source code is written in a dimension independent notation using the new Loop Annotation Syntax. It can be translated to Fortran 90, especially suited for data-parallel computers, or Fortran 77. A user interface based on web browsers, online manuals, and macros for several visualisation softwares make the package complete and user-friendly.

References in zbMATH (referenced in 19 articles )

Showing results 1 to 19 of 19.
Sorted by year (citations)

  1. Keppens, Rony; Teunissen, Jannis; Xia, Chun; Porth, Oliver: \textttMPI-AMRVAC: a parallel, grid-adaptive PDE toolkit (2021)
  2. Ma, Yicong; Hu, Kaibo; Hu, Xiaozhe; Xu, Jinchao: Robust preconditioners for incompressible MHD models (2016)
  3. Phillips, Edward G.; Shadid, John N.; Cyr, Eric C.; Elman, Howard C.; Pawlowski, Roger P.: Block preconditioners for stable mixed nodal and edge finite element representations of incompressible resistive MHD (2016)
  4. Shadid, J. N.; Pawlowski, R. P.; Cyr, E. C.; Tuminaro, R. S.; Chacón, L.; Weber, P. D.: Scalable implicit incompressible resistive MHD with stabilized FE and fully-coupled Newton-Krylov-AMG (2016)
  5. Keppens, Rony; Porth, Oliver: Scalar hyperbolic PDE simulations and coupling strategies (2014)
  6. Botchev, M. A.: A block Krylov subspace time-exact solution method for linear ordinary differential equation systems. (2013)
  7. Keppens, R.; Meliani, Z.; Van Marle, A. J.; Delmont, P.; Vlasis, A.; van der Holst, B.: Parallel, grid-adaptive approaches for relativistic hydro- and magnetohydrodynamics (2012)
  8. Shadid, J. N.; Pawlowski, R. P.; Banks, J. W.; Chacón, L.; Lin, P. T.; Tuminaro, R. S.: Towards a scalable fully-implicit fully-coupled resistive MHD formulation with stabilized FE methods (2010)
  9. Matsumoto, Yosuke; Seki, Kanako: Implementation of the CIP algorithm to magnetohydrodynamic simulations (2008)
  10. Tan, Zhijun: Adaptive moving mesh methods for two-dimensional resistive magneto-hydrodynamic PDE models (2007)
  11. van der Holst, B.; Keppens, R.: Hybrid block-AMR in Cartesian and curvilinear coordinates: MHD applications (2007)
  12. Tóth, Gábor; De Zeeuw, Darren L.; Gombosi, Tamas I.; Powell, Kenneth G.: A parallel explicit/implicit time stepping scheme on block-adaptive grids (2006)
  13. Van Dam, A.; Zegeling, P. A.: A robust moving mesh finite volume method applied to 1D hyperbolic conservation laws from magnetohydrodynamics (2006)
  14. Hujeirat, A.: A problem-orientable numerical algorithm for modeling multi-dimensional radiative MHD flows in astrophysics-the hierarchical solution scenario (2005)
  15. Keppens, R.; Nool, M.; Tóth, G.; Goedbloed, J. P.: Adaptive mesh refinement for conservative systems: multi-dimensional efficiency evaluation (2003)
  16. Beliën, A. J. C.; Botchev, M. A.; Goedbloed, J. P.; van der Holst, B.; Keppens, R.: FINESSE: Axisymmetric MHD equilibria with flow (2002)
  17. Botchev, Mike A.; van der Vorst, Henk A.: A parallel nearly implicit time-stepping scheme (2001)
  18. Tóth, Gábor: The (\nabla\cdotB=0) constraint in shock-capturing magnetohydrodynamics codes (2000)
  19. Tóth, Gábor: The LASY preprocessor and its application to general multidimensional codes (1997)