NLEVP

NLEVP: A Collection of Nonlinear Eigenvalue Problems. This MATLAB Toolbox provides a collection of nonlinear eigenvalue problems. It contains problems from models of real-life applications as well as problems constructed specifically to have particular properties. The toolbox is provided as a zip file and a tar file, which contain the MATLAB M-files and the documentation. Installation instructions are in the Users’ Guide.


References in zbMATH (referenced in 106 articles , 1 standard article )

Showing results 1 to 20 of 106.
Sorted by year (citations)

1 2 3 4 5 6 next

  1. Anguas, Luis Miguel; Bueno, Maria Isabel; Dopico, Froilán M.: Conditioning and backward errors of eigenvalues of homogeneous matrix polynomials under Möbius transformations (2020)
  2. Bevilacqua, Roberto; Del Corso, Gianna M.; Gemignani, Luca: Fast QR iterations for unitary plus low rank matrices (2020)
  3. De Terán, Fernando: Backward error and conditioning of Fiedler companion linearizations (2020)
  4. Hochstenbach, Michiel E.; Plestenjak, Bor: Computing several eigenvalues of nonlinear eigenvalue problems by selection (2020)
  5. Malyshev, Alexander; Sadkane, Miloud: Computing the distance to continuous-time instability of quadratic matrix polynomials (2020)
  6. Melman, A.: Directional bounds for polynomial zeros and eigenvalues (2020)
  7. Pandur, Marija Miloloža: Detecting a hyperbolic quadratic eigenvalue problem by using a subspace algorithm (2020)
  8. Alam, Rafikul; Safique Ahmad, Sk.: Sensitivity analysis of nonlinear eigenproblems (2019)
  9. Aurentz, Jared; Mach, Thomas; Robol, Leonardo; Vandebril, Raf; Watkins, David S.: Fast and backward stable computation of eigenvalues and eigenvectors of matrix polynomials (2019)
  10. Jarlebring, Elias: Broyden’s method for nonlinear eigenproblems (2019)
  11. Korosteleva, D. M.; Solov’ev, P. S.; Solov’ev, S. I.: Finite element approximation of the minimal eigenvalue and the corresponding positive eigenfunction of a nonlinear Sturm-Liouville problem (2019)
  12. Melman, A.: Polynomial eigenvalue bounds from companion matrix polynomials (2019)
  13. Melman, A.: Extensions of the Eneström-Kakeya theorem for matrix polynomials (2019)
  14. Nakatsukasa, Yuji; Noferini, Vanni: Inertia laws and localization of real eigenvalues for generalized indefinite eigenvalue problems (2019)
  15. Pandur, Marija Miloloža: Preconditioned gradient iterations for the eigenproblem of definite matrix pairs (2019)
  16. Samsonov, A. A.; Solov’ev, P. S.; Solov’ev, S. I.; Korosteleva, D. M.: Error of the finite element approximation for a differential eigenvalue problem with nonlinear dependence on the spectral parameter (2019)
  17. Seeger, Alberto: Cone-constrained rational eigenvalue problems (2019)
  18. Araujo-Cabarcas, Juan Carlos; Engström, Christian; Jarlebring, Elias: Efficient resonance computations for Helmholtz problems based on a Dirichlet-to-Neumann map (2018)
  19. Chiappinelli, Raffaele: What do you mean by “Nonlinear eigenvalue problems”? (2018)
  20. Elias Jarlebring, Max Bennedich, Giampaolo Mele, Emil Ringh, Parikshit Upadhyaya: NEP-PACK: A Julia package for nonlinear eigenproblems - v0.2 (2018) arXiv

1 2 3 4 5 6 next


Further publications can be found at: http://www.mims.manchester.ac.uk/research/numerical-analysis/publications.php