A mixed integer (linear) program (mip) is an optimization problem in which a linear objective function is minimized subject to linear constraints over real- and integervalued variables. For details on mixed integer programming, see, e.g., [69,106]. The miplib is a diverse collection of challenging real-world mip instances from various academic and industrial applications suited for benchmarking and testing of mip solution algorithms.

References in zbMATH (referenced in 308 articles , 1 standard article )

Showing results 1 to 20 of 308.
Sorted by year (citations)

1 2 3 ... 14 15 16 next

  1. Balas, Egon; Serra, Thiago: When lift-and-project cuts are different (2020)
  2. Basso, S.; Ceselli, Alberto; Tettamanzi, Andrea: Random sampling and machine learning to understand good decompositions (2020)
  3. Bastubbe, Michael; Lübbecke, Marco E.: A branch-and-price algorithm for capacitated hypergraph vertex separation (2020)
  4. Bowly, Simon; Smith-Miles, Kate; Baatar, Davaatseren; Mittelmann, Hans: Generation techniques for linear programming instances with controllable properties (2020)
  5. Fukasawa, Ricardo; Poirrier, Laurent; Yang, Shenghao: Split cuts from sparse disjunctions (2020)
  6. Gamrath, Gerald; Berthold, Timo; Salvagnin, Domenico: An exploratory computational analysis of dual degeneracy in mixed-integer programming (2020)
  7. Gemander, Patrick; Chen, Wei-Kun; Weninger, Dieter; Gottwald, Leona; Gleixner, Ambros; Martin, Alexander: Two-row and two-column mixed-integer presolve using hashing-based pairing methods (2020)
  8. Gleixner, Ambros; Steffy, Daniel E.: Linear programming using limited-precision oracles (2020)
  9. Goerigk, Marc; Maher, Stephen J.: Generating hard instances for robust combinatorial optimization (2020)
  10. Kazachkov, Aleksandr M.; Nadarajah, Selvaprabu; Balas, Egon; Margot, François: Partial hyperplane activation for generalized intersection cuts (2020)
  11. Lozano, Leonardo; Bergman, David; Smith, J. Cole: On the consistent path problem (2020)
  12. Mittelmann, Hans D.: Benchmarking optimization software -- a (Hi)story (2020)
  13. Müller, Benjamin; Serrano, Felipe; Gleixner, Ambros: Using two-dimensional projections for stronger separation and propagation of bilinear terms (2020)
  14. Tahernejad, Sahar; Ralphs, Ted K.; DeNegre, Scott T.: A branch-and-cut algorithm for mixed integer bilevel linear optimization problems and its implementation (2020)
  15. Basu, Amitabh; Sankaranarayanan, Sriram: Can cut-generating functions be good and efficient? (2019)
  16. Braun, Gábor; Pokutta, Sebastian; Zink, Daniel: Lazifying conditional gradient algorithms (2019)
  17. Eilbrecht, Jan; Stursberg, Olaf: Hierarchical solution of non-convex optimal control problems with application to autonomous driving (2019)
  18. Fukasawa, Ricardo; Poirrier, Laurent: Permutations in the factorization of simplex bases (2019)
  19. Fukasawa, Ricardo; Poirrier, Laurent; Xavier, Álinson S.: The (not so) trivial lifting in two dimensions (2019)
  20. Furini, Fabio; Traversi, Emiliano; Belotti, Pietro; Frangioni, Antonio; Gleixner, Ambros; Gould, Nick; Liberti, Leo; Lodi, Andrea; Misener, Ruth; Mittelmann, Hans; Sahinidis, Nikolaos V.; Vigerske, Stefan; Wiegele, Angelika: QPLIB: a library of quadratic programming instances (2019)

1 2 3 ... 14 15 16 next

Further publications can be found at: http://miplib.zib.de/biblio.html