GetDP: a General Environment for the Treatment of Discrete Problems. GetDP is a general finite element solver using mixed elements to discretize de Rham-type complexes in one, two and three dimensions. The main feature of GetDP is the closeness between the input data defining discrete problems (written by the user in ASCII data files) and the symbolic mathematical expressions of these problems.

References in zbMATH (referenced in 42 articles )

Showing results 1 to 20 of 42.
Sorted by year (citations)

1 2 3 next

  1. Aylwin, Rubén; Jerez-Hanckes, Carlos: The effect of quadrature rules on finite element solutions of Maxwell variational problems. Consistency estimates on meshes with straight and curved elements (2021)
  2. Rossi, Tuomo; Räbinä, Jukka; Mönkölä, Sanna; Kiiskinen, Sampsa; Lohi, Jonni; Kettunen, Lauri: Systematisation of systems solving physics boundary value problems (2021)
  3. Aylwin, Ruben; Jerez-Hanckes, Carlos; Schwab, Christoph; Zech, Jakob: Domain uncertainty quantification in computational electromagnetics (2020)
  4. Mattesi, V.; Darbas, M.; Geuzaine, C.: A quasi-optimal non-overlapping domain decomposition method for two-dimensional time-harmonic elastic wave problems (2020)
  5. Modave, A.; Geuzaine, C.; Antoine, X.: Corner treatments for high-order local absorbing boundary conditions in high-frequency acoustic scattering (2020)
  6. Modave, A.; Royer, A.; Antoine, X.; Geuzaine, C.: A non-overlapping domain decomposition method with high-order transmission conditions and cross-point treatment for Helmholtz problems (2020)
  7. Mattesi, Vanessa; Darbas, M.; Geuzaine, C.: A high-order absorbing boundary condition for 2D time-harmonic elastodynamic scattering problems (2019)
  8. Niyonzima, Innocent; Jiao, Yang; Fish, Jacob: Modeling and simulation of nonlinear electro-thermo-mechanical continua with application to shape memory polymeric medical devices (2019)
  9. Alouges, François; Aussal, Matthieu: FEM and BEM simulations with the Gypsilab framework (2018)
  10. Homolya, Miklós; Mitchell, Lawrence; Luporini, Fabio; Ham, David A.: TSFC: a structure-preserving form compiler (2018)
  11. Vion, Alexandre; Geuzaine, Christophe: Improved sweeping preconditioners for domain decomposition algorithms applied to time-harmonic Helmholtz and Maxwell problems (2018)
  12. Antoine, X.; Geuzaine, C.: Optimized Schwarz domain decomposition methods for scalar and vector Helmholtz equations (2017)
  13. Chovan, Jaroslav; Geuzaine, Christophe; Slodička, Marián: (A)-(\phi) formulation of a mathematical model for the induction hardening process with a nonlinear law for the magnetic field (2017)
  14. Paquay, Yannick; Brüls, O.; Geuzaine, C.: Model order reduction of nonlinear eddy current problems using missing point estimation (2017)
  15. Niyonzima, I.; Geuzaine, C.; Schöps, S.: Waveform relaxation for the computational homogenization of multiscale magnetoquasistatic problems (2016)
  16. Thierry, B.; Vion, A.; Tournier, S.; El Bouajaji, M.; Colignon, D.; Marsic, N.; Antoine, X.; Geuzaine, C.: GetDDM: an open framework for testing optimized Schwarz methods for time-harmonic wave problems (2016)
  17. El Bouajaji, M.; Thierry, B.; Antoine, X.; Geuzaine, C.: A quasi-optimal domain decomposition algorithm for the time-harmonic Maxwell’s equations (2015)
  18. Glatz, Thomas; Scherzer, Otmar; Widlak, Thomas: Texture generation for photoacoustic elastography (2015)
  19. Haine, Ghislain: Recovering the observable part of the initial data of an infinite-dimensional linear system with skew-adjoint generator (2014)
  20. Caldini-Queiros, Céline; Chabannes, Vincent; Ismail, Mourad; Pena, Goncalo; Prud’homme, Christophe; Szopos, Marcela; Tarabay, Ranine: Towards large-scale three-dimensional blood flow simulations in realistic geometries (2013)

1 2 3 next