FFTW

FFTW is a C subroutine library for computing the discrete Fourier transform (DFT) in one or more dimensions, of arbitrary input size, and of both real and complex data (as well as of even/odd data, i.e. the discrete cosine/sine transforms or DCT/DST). We believe that FFTW, which is free software, should become the FFT library of choice for most applications. The latest official release of FFTW is version 3.3.3, available from our download page. Version 3.3 introduced support for the AVX x86 extensions, a distributed-memory implementation on top of MPI, and a Fortran 2003 API. Version 3.3.1 introduced support for the ARM Neon extensions.


References in zbMATH (referenced in 504 articles , 1 standard article )

Showing results 1 to 20 of 504.
Sorted by year (citations)

1 2 3 ... 24 25 26 next

  1. Bona, Jerry L.; Durán, Angel; Mitsotakis, Dimitrios: Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I: Approximations (2021)
  2. Bright, Curtis; Kotsireas, Ilias; Heinle, Albert; Ganesh, Vijay: Complex Golay pairs up to length 28: a search via computer algebra and programmatic SAT (2021)
  3. Caprace, Denis-Gabriel; Gillis, Thomas; Chatelain, Philippe: FLUPS: a Fourier-based library of unbounded Poisson solvers (2021)
  4. Cayama, Jorge; Cuesta, Carlota M.; de la Hoz, Francisco: A pseudospectral method for the one-dimensional fractional Laplacian on (\mathbbR) (2021)
  5. Chernykh, Igor; Kulikov, Igor; Tutukov, Alexander: Hydrogen-helium chemical and nuclear galaxy collision: hydrodynamic simulations on AVX-512 supercomputers (2021)
  6. Choi, Gary P. T.; Rycroft, Chris H.: Volumetric density-equalizing reference map with applications (2021)
  7. Dick, Josef; Goda, Takashi; Murata, Hiroya: Toeplitz Monte Carlo (2021)
  8. Hare, Kevin G.; Jankauskas, Jonas: On Newman and Littlewood polynomials with a prescribed number of zeros inside the unit disk (2021)
  9. Jafarzadeh, Siavash; Wang, Longzhen; Larios, Adam; Bobaru, Florin: A fast convolution-based method for peridynamic transient diffusion in arbitrary domains (2021)
  10. Kämmerer, Lutz; Potts, Daniel; Volkmer, Toni: High-dimensional sparse FFT based on sampling along multiple rank-1 lattices (2021)
  11. Languasco, Alessandro: Numerical verification of Littlewood’s bounds for (|L(1,\chi)|) (2021)
  12. Languasco, Alessandro: Efficient computation of the Euler-Kronecker constants of prime cyclotomic fields (2021)
  13. Pan, Xiaomin; Chun, Soomin; Choi, Jung-Il: Efficient monolithic projection-based method for chemotaxis-driven bioconvection problems (2021)
  14. Sinhababu, Arijit; Ayyalasomayajula, Sathyanarayana: Accuracy and computational efficiency of dealiasing schemes for the DNS of under resolved flows with strong gradients (2021)
  15. Wouter Baert, Nick Vannieuwenhoven: ATC: an Advanced Tucker Compression library for multidimensional data (2021) arXiv
  16. Yavich, Nikolay; Khokhlov, Nikolay; Malovichko, Mikhail; Zhdanov, Michael S.: Contraction operator transformation for the complex heterogeneous Helmholtz equation (2021)
  17. Anantharamu, Sreevatsa; Mahesh, Krishnan: Analysis of wall-pressure fluctuation sources from direct numerical simulation of turbulent channel flow (2020)
  18. Bright, Curtis; Kotsireas, Ilias; Ganesh, Vijay: Applying computer algebra systems with SAT solvers to the Williamson conjecture (2020)
  19. Cantisán, Julia; Coccolo, Mattia; Seoane, Jesús M.; Sanjuán, Miguel A. F.: Delay-induced resonance in the time-delayed Duffing oscillator (2020)
  20. Cayama, Jorge; Cuesta, Carlota M.; de la Hoz, Francisco: Numerical approximation of the fractional Laplacian on (\mathbbR) using orthogonal families (2020)

1 2 3 ... 24 25 26 next