FLATA

FLATA is a toolset for the manipulation and the analysis of non-deterministic integer programs (also known as counter automata). The main functionalities of FLATA are: reachability analysis of non-recursive programs - checking if an error control state is reachable termination analysis of non-recursive programs - computation of termination preconditions computation of summaries of recursive programs


References in zbMATH (referenced in 18 articles )

Showing results 1 to 18 of 18.
Sorted by year (citations)

  1. Champion, Adrien; Chiba, Tomoya; Kobayashi, Naoki; Sato, Ryosuke: ICE-based refinement type discovery for higher-order functional programs (2020)
  2. Fedyukovich, Grigory; Kaufman, Samuel J.; Bodík, Rastislav: Learning inductive invariants by sampling from frequency distributions (2020)
  3. Finkel, Alain; Praveen, M.: Verification of flat FIFO systems (2020)
  4. Leroux, Jérôme; Rümmer, Philipp; Subotić, Pavle: Guiding Craig interpolation with domain-specific abstractions (2016)
  5. Al-Bataineh, Omar; Reynolds, Mark; French, Tim: Accelerating worst case execution time analysis of timed automata models with cyclic behaviour (2015)
  6. Alberti, Francesco; Ghilardi, Silvio; Sharygina, Natasha: A new acceleration-based combination framework for array properties (2015)
  7. Demri, Stéphane; Dhar, Amit Kumar; Sangnier, Arnaud: Taming past LTL and flat counter systems (2015)
  8. Bozga, Marius; Iosif, Radu; Konečný, Filip: Deciding conditional termination (2014)
  9. Demri, Stéphane: On selective unboundedness of VASS (2013)
  10. Darondeau, Philippe; Demri, Stéphane; Meyer, Roland; Morvan, Christophe: Petri net reachability graphs: decidability status of first order properties (2012)
  11. Demri, Stéphane; Dhar, Amit Kumar; Sangnier, Arnaud: Taming past LTL and flat counter systems (2012)
  12. Fietzke, Arnaud; Kruglov, Evgeny; Weidenbach, Christoph: Automatic generation of invariants for circular derivations in SUP(LA) (2012)
  13. Ghardallou, Wided; Mraihi, Olfa; Louhichi, Asma; Jilani, Lamia Labed; Bsaies, Khaled; Mili, Ali: A versatile concept for the analysis of loops (2012)
  14. Hojjat, Hossein; Konečný, Filip; Garnier, Florent; Iosif, Radu; Kuncak, Viktor; Rümmer, Philipp: A verification toolkit for numerical transition systems. Tool paper (2012) ioport
  15. Schrammel, Peter; Jeannet, Bertrand: Applying abstract acceleration to (co-)reachability analysis of reactive programs (2012)
  16. Jaubert, Rémi; Reynier, Pierre-Alain: Quantitative robustness analysis of flat timed automata (2011)
  17. Bozga, Marius; Iosif, Radu; Konečný, Filip: Fast acceleration of ultimately periodic relations (2010)
  18. Bozga, Marius; Gîrlea, Codruţa; Iosif, Radu: Iterating octagons (2009)


Further publications can be found at: http://www-verimag.imag.fr/Publications-by-years,255.html?lang=en