MISER3

Software for Solving Optimal Control Problems. MISER3 is a suite of Fortran programs for solving continuous and discrete-time optimal control problems, optimal parameter selection problems, or a combination of both, subject to general constraints. The method used is based on the idea of control parametrization in which the controls are approximated by piecewise constant or piecewise linear (continuous) functions defined on suitable partitions of the time interval. The code then converts the problem into a nonlinear programming problem which is solved using a sequential quadratic programming algorithm.


References in zbMATH (referenced in 81 articles , 1 standard article )

Showing results 41 to 60 of 81.
Sorted by year (citations)
  1. Kaya, C. Y.; Noakes, J. L.: Computational method for time-optimal switching control (2003)
  2. Lee, H. W. J.; Teo, K. L.: Control parametrization enhancing technique for solving a special ODE class with state dependent switch (2003)
  3. Koh, Michael T. H.; Jennings, Leslie S.: Dynamic optimisation: A solution to the inverse dynamics problem of biomechanics using MISER3 (2002)
  4. Lee, W. R.; Rehbock, V.; Caccetta, L.; Teo, K. L.: Numerical solution of optimal control problems with discrete-valued system parameters (2002)
  5. Teo, K. L.; Lee, W. R.; Jennings, L. S.; Wang, S.; Liu, Y.: Numerical solution of an optimal control problem with variable time points in the objective function (2002)
  6. Wong, K. H.; Jennings, L. S.; Benyah, F.: The control parametrization enhancing transform for constrained time--delayed optimal control problems (2002)
  7. Benyah, Francis; Jennings, Les S.: A review of ill-conditioning and regularization in optimal control computation (2001)
  8. Craven, B. D.; Islam, S. M. N.: Computing optimal control on MATLAB -- the SCOM package and economic growth models (2001)
  9. Lee, H. W. J.; Teo, K. L.; Lim, Andrew E. B.: Sensor scheduling in continuous time (2001)
  10. Liu, Y.; Ito, S.; Lee, H. W. J.; Teo, K. L.: Semi-infinite programming approach to continuously-constrained linear-quadratic optimal control problems (2001)
  11. Fox, B.; Jennings, L. S.; Zomaya, A. Y.: Numerical computation of differential-algebraic equations for the approximation of artificial satellite trajectories and planetary ephemerides (2000)
  12. Teo, K. L.; Jennings, L. S.; Lee, H. W. J.; Rehbock, V.: The control parameterization enhancing transform for constrained optimal control problems (1999)
  13. Benyah, F.; Jennings, L. S.: Ill-conditioning in optimal control computation (1998)
  14. Lee, H. W. J.; Teo, K. L.; Cai, X. Q.: An optimal control approach to nonlinear mixed integer programming problems (1998)
  15. Lee, H. W. J.; Teo, K. L.; Rehbock, V.: Suboptimal local feedback control for a class of constrained discrete time nonlinear control problems (1998)
  16. Liu, Y.; Teo, K. L.; Jennings, L. S.; Wang, S.: On a class of optimal control problems with state jumps (1998)
  17. Teo, K. L.; Lee, H. W. J.; Rehbock, V.: Control parametrization enhancing technique for time optimal control and optimal three-valued control problems (1998)
  18. Teo, Kok Lay; Li, Duan; Liu, Yanqun: Perturbation feedback control in general multiple linear-quadratic control problems (1998)
  19. Jennings, L. S.; Sethi, S. P.; Teo, K. L.: Computation of optimal production plans for manufacturing systems (1997)
  20. Lee, H. W. J.; Teo, K. L.; Rehbock, V.; Jennings, L. S.: Control parametrization enhancing technique for time optimal control problems (1997)