Software for Solving Optimal Control Problems. MISER3 is a suite of Fortran programs for solving continuous and discrete-time optimal control problems, optimal parameter selection problems, or a combination of both, subject to general constraints. The method used is based on the idea of control parametrization in which the controls are approximated by piecewise constant or piecewise linear (continuous) functions defined on suitable partitions of the time interval. The code then converts the problem into a nonlinear programming problem which is solved using a sequential quadratic programming algorithm.

References in zbMATH (referenced in 81 articles , 1 standard article )

Showing results 61 to 80 of 81.
Sorted by year (citations)
  1. Lim, Andrew E. B.; Moore, John B.: A quasi-separation theorem for LQG optimal control with IQ constraints (1997)
  2. Paskota, M.; Lee, H. W.: Targeting moving targets in chaotic dynamical systems. (1997) ioport
  3. Jennings, L. S.; Teo, K. L.; Rehbock, V.; Zheng, W. X.: Optimal control of singular systems with a cost on changing control (1996)
  4. Jennings, L. S.; Wong, K. H.; Teo, K. L.: Optimal control computation to account for eccentric movement (1996)
  5. Lee, C. S.; Rehbock, V.: On the optimal drug administration of a discrete cancer chemotherapy model (1996)
  6. Edwards, N. J.; Goh, C. J.: Direct training method for a continuous-time nonlinear optimal feedback controller (1995)
  7. Fisher, M. E.; Grantham, W. J.; Teo, K. L.: Neighbouring extremals for nonlinear systems with control constraints (1995)
  8. Teo, K. L.; Wong, K. H.; Yan, W. Y.: Gradient-flow approach for computing a nonlinear-quadratic optimal-output feedback gain matrix (1995)
  9. Teo, K. L.; Zang, Z.; Yan, W.: Stabilizing controller design for linear unknown unstable systems: Successive learning identification and maximally robust controller design (1995)
  10. Goh, C. J.; Edwards, N. J.: Synthesis of optimal feedback controller by neural networks (1994)
  11. Goh, C. J.; Teo, K. L.; Agarwal, R. P.: Computing eigenvalues of Sturm-Liouville problems via optimal control theory (1994)
  12. Teo, K. L.; Fisher, M. E.; Moore, J. B.: A suboptimal feedback stabilizing controller for a class of nonlinear regulator problems (1993)
  13. Brown, Timothy; Pallant, Diana L.: A stochastic optimal feedback control problem with random-sized jumps (1992)
  14. Fisher, M. E.; Jennings, L. S.: Discrete-time optimal control problems with general constraints (1992)
  15. Martin, R. B.; Fisher, M. E.; Minchin, R. F.; Teo, K. L.: Low-intensity combination chemotherapy maximizes host survival time for tumors containing drug-resistant cells (1992)
  16. Rehbock, V.; Teo, K. L.; Jennings, L. S.: A computational procedure for suboptimal robust controls (1992)
  17. Rehbock, V.; Teo, K. L.; Jennings, L. S.; Lee, C. S.: An exact penalty function approach to all-time-step constrained discrete- time optimal control problems (1992)
  18. Reid, D. W.; Teo, K. L.: Optimal control problems with fuzzy system parameters (1992)
  19. Goh, C. J.; Mees, A. I.: Optimal control on a graph with application to train scheduling problems (1991)
  20. Jennings, L. S.; Fisher, M. E.; Teo, K. L.; Goh, C. J.: MISER 3: Solving optimal control problems -- an update (1991)