EISPACK is a collection of Fortran subroutines that compute the eigenvalues and eigenvectors of nine classes of matrices: complex general, complex Hermitian, real general, real symmetric, real symmetric banded, real symmetric tridiagonal, special real tridiagonal, generalized real, and generalized real symmetric matices. In addition, two routines are included that use singular value decomposition to solve certain least-squares problems. EISPACK has been superseded for the most part by LAPACK. (netlib eispack)

References in zbMATH (referenced in 488 articles , 2 standard articles )

Showing results 1 to 20 of 488.
Sorted by year (citations)

1 2 3 ... 23 24 25 next

  1. Patsatzis, Dimitrios G.: Algorithmic asymptotic analysis: extending the arsenal of cancer immunology modeling (2022)
  2. García-Zapata, Juan Luis; Díaz Martín, Juan Carlos; Cortés Fácila, Álvaro: An adaptive subdivision method for root finding of univariate polynomials (2019)
  3. Krivovichev, Gerasim V.; Mikheev, Sergey A.: On the stability of multi-step finite-difference-based lattice Boltzmann schemes (2019)
  4. Lambers, James V.; Sumner, Amber C.: Explorations in numerical analysis (2019)
  5. MirMostafaee, S. M. T. K.; Alizadeh, Morad; Altun, Emrah; Nadarajah, Saralees: The exponentiated generalized power Lindley distribution: properties and applications (2019)
  6. Askham, T.: A stabilized separation of variables method for the modified biharmonic equation (2018)
  7. Charpentier, Isabelle; Gustedt, Jens: \textttArbogast: higher order automatic differentiation for special functions with Modular C (2018)
  8. Conte, S. D.; de Boor, Carl: Elementary numerical analysis. An algorithmic approach. Updated with MATLAB (2018)
  9. Dongarra, Jack; Gates, Mark; Haidar, Azzam; Kurzak, Jakub; Luszczek, Piotr; Tomov, Stanimire; Yamazaki, Ichitaro: The singular value decomposition: anatomy of optimizing an algorithm for extreme scale (2018)
  10. Garcia, R. D. M.: On the (P_\textN) method in spherical geometry: a stable solution for the exterior of a sphere (2018)
  11. Sewell, Granville: Solving partial differential equation applications with PDE2D (2018)
  12. Gentle, James E.: Matrix algebra. Theory, computations and applications in statistics (2017)
  13. Sad Saoud, Kahina; Le Grognec, Philippe: An enriched 1D finite element for the buckling analysis of sandwich beam-columns (2016)
  14. Xue, Dingyü; Chen, YangQuan: Scientific computing with MATLAB (2016)
  15. Granat, Robert; Kågström, Bo; Kressner, Daniel; Shao, Meiyue: Algorithm 953: Parallel library software for the multishift QR algorithm with aggressive early deflation (2015)
  16. Scherer, C. S.: An analytical approach to the strong evaporation problem in rarefied gas dynamics (2015)
  17. Ballard, G.; Carson, E.; Demmel, J.; Hoemmen, M.; Knight, N.; Schwartz, O.: Communication lower bounds and optimal algorithms for numerical linear algebra (2014)
  18. Jin, Jian-Ming: The finite element method in electromagnetics (2014)
  19. Sewell, Granville: Computational methods of linear algebra (2014)
  20. Van Zee, Field G.; van de Geijn, Robert A.; Quintana-Ortí, Gregorio: Restructuring the tridiagonal and bidiagonal QR algorithms for performance (2014)

1 2 3 ... 23 24 25 next