CARAT is a computer package which handles enumeration, construction, recognition, and comparison problems for crystallographic groups up to dimension 6. The name CARAT itself is an acronym for Crystallographic AlgoRithms And Tables. CARAT is a compilation of various programs written in C developed under HP-UX and Linux, and should be portable to most Unices. In particular CARAT does not come together with an environment, but relies on the ordinary unixes shell and files for input and output. This is one of the points which distiguishes CARAT from most other packages for computer algebra, like GAP. If you would like such a user interface, the current version of GAP comes with an interface to CARAT, which enables one to use the most important functions of CARAT, but not all. Computer algebra system (CAS).

References in zbMATH (referenced in 45 articles )

Showing results 1 to 20 of 45.
Sorted by year (citations)

1 2 3 next

  1. Lima Gonçalves, Daciberg; Guaschi, John; Ocampo, Oscar; de Miranda e Pereiro, Carolina: Crystallographic groups and flat manifolds from surface braid groups (2021)
  2. Piwek, Paweł; Popović, David; Wilkes, Gareth: Distinguishing crystallographic groups by their finite quotients (2021)
  3. Bettiol, Renato G.; Derdzinski, Andrzej; Piccione, Paolo: Teichmüller theory and collapse of flat manifolds (2018)
  4. Gąsior, Anna; Lutowski, Rafał; Szczepański, Andrzej: A short note about diffuse Bieberbach groups (2018)
  5. Hoshi, Akinari; Yamasaki, Aiichi: Rationality problem for algebraic tori (2017)
  6. Podestá, Ricardo A.: The eta function and eta invariant of (\mathbbZ_2^r)-manifolds (2017)
  7. Athanasopoulos, P.; Faraggi, A. E.; Nibbelink, S. Groot; Mehta, V. M.: Heterotic free fermionic and symmetric toroidal orbifold models (2016)
  8. Lutowski, Rafał; Putrycz, Bartosz: Spin structures on flat manifolds (2015)
  9. Mertens, Michael H.: Automorphism groups of hyperbolic lattices (2014)
  10. Fischer, Maximilian; Ratz, Michael; Torrado, Jesús; Vaudrevange, Patrick K. S.: Classification of symmetric toroidal orbifolds (2013)
  11. Gąsior, A.; Szczepański, A.: Tangent bundles of Hantzsche-Wendt manifolds (2013)
  12. Lutowski, Rafał: Finite outer automorphism groups of crystallographic groups. (2013)
  13. Petrosyan, Nansen; Putrycz, Bartosz: On cohomology of crystallographic groups with cyclic holonomy of split type. (2012)
  14. Szczepański, A.: Eta invariants for flat manifolds (2012)
  15. Donten, Maria: On Kummer 3-folds (2011)
  16. Kitayama, Hidetaka: The rationality problem for purely monomial group actions (2011)
  17. Console, S.; Miatello, R. J.; Rossetti, J. P.: (\mathbbZ_2)-cohomology and spectral properties of flat manifolds of diagonal type (2010)
  18. Gilkey, Peter B.; Miatello, Roberto J.; Podestá, Ricardo A.: The eta invariant and equivariant bordism of flat manifolds with cyclic holonomy group of odd prime order (2010)
  19. Ratcliffe, John G.; Tschantz, Steven T.: Fibered orbifolds and crystallographic groups (2010)
  20. Dekimpe, Karel; Hałenda, Marek; Szczepański, Andrzej: Kähler flat manifolds (2009)

1 2 3 next