DOLFIN

DOLFIN is a C++/Python library that functions as the main user interface of FEniCS. A large part of the functionality of FEniCS is implemented as part of DOLFIN. It provides a problem solving environment for models based on partial differential equations and implements core parts of the functionality of FEniCS, including data structures and algorithms for computational meshes and finite element assembly. To provide a simple and consistent user interface, DOLFIN wraps the functionality of other FEniCS components and external software, and handles the communication between these components.


References in zbMATH (referenced in 152 articles , 1 standard article )

Showing results 1 to 20 of 152.
Sorted by year (citations)

1 2 3 ... 6 7 8 next

  1. Bartels, Sören; Wachsmuth, Gerd: Numerical approximation of optimal convex shapes (2020)
  2. Bazilevs, Yuri; Kamensky, David; Moutsanidis, Georgios; Shende, Shaunak: Residual-based shock capturing in solids (2020)
  3. Bin Zubair Syed, H.; Farquharson, C.; MacLachlan, S.: Block preconditioning techniques for geophysical electromagnetics (2020)
  4. Grimmonprez, Marijke; Marin, Liviu; Van Bockstal, Karel: The reconstruction of a solely time-dependent load in a simply supported non-homogeneous Euler-Bernoulli beam (2020)
  5. Jahn, Mischa; Montalvo-Urquizo, Jonathan: Modeling and simulation of keyhole-based welding as multi-domain problem using the extended finite element method (2020)
  6. Lanzendörfer, M.; Hron, J.: On multiple solutions to the steady flow of incompressible fluids subject to do-nothing or constant traction boundary conditions on artificial boundaries (2020)
  7. Li, Jiao; Ying, Jinyong: A simple and efficient technique to accelerate the computation of a nonlocal dielectric model for electrostatics of biomolecule (2020)
  8. Adesokan, Bolaji James; Jensen, Bjørn; Jin, Bangti; Knudsen, Kim: Acousto-electric tomography with total variation regularization (2019)
  9. Benn, James; Marsland, Stephen; McLachlan, Robert I.; Modin, Klas; Verdier, Olivier: Currents and finite elements as tools for shape space (2019)
  10. Crestel, Benjamin; Stadler, Georg; Ghattas, Omar: A comparative study of structural similarity and regularization for joint inverse problems governed by PDEs (2019)
  11. Dokken, Jørgen S.; Funke, Simon W.; Johansson, August; Schmidt, Stephan: Shape optimization using the finite element method on multiple meshes with Nitsche coupling (2019)
  12. Farrell, P. E.; Hake, J. E.; Funke, S. W.; Rognes, M. E.: Automated adjoints of coupled PDE-ODE systems (2019)
  13. Franceschini, Andrea; Paludetto Magri, Victor A.; Mazzucco, Gianluca; Spiezia, Nicolò; Janna, Carlo: A robust adaptive algebraic multigrid linear solver for structural mechanics (2019)
  14. Gibson, Thomas H.; McRae, Andrew T. T.; Cotter, Colin J.; Mitchell, Lawrence; Ham, David A.: Compatible finite element methods for geophysical flows. Automation and implementation using Firedrake (2019)
  15. Jakob M. Maljaars, Chris N. Richardson, Nathan Sime: LEoPart: a particle library for FEniCS (2019) arXiv
  16. Joshaghani, M. S.; Joodat, S. H. S.; Nakshatrala, K. B.: A stabilized mixed discontinuous Galerkin formulation for double porosity/permeability model (2019)
  17. Kamensky, David; Bazilevs, Yuri: \textsctIGAr: automating isogeometric analysis with \textscFEniCS (2019)
  18. Kanzow, C.; Karl, Veronika; Steck, Daniel; Wachsmuth, Daniel: The multiplier-penalty method for generalized Nash equilibrium problems in Banach spaces (2019)
  19. Monnier, Jérôme; Zhu, Jiamin: Inference of the bottom topography in anisothermal mildly-sheared shallow ice flows (2019)
  20. Rickert, Wilhelm; Glane, Sebastian: Cavity flow of a micropolar fluid -- a parameter study (2019)

1 2 3 ... 6 7 8 next