The FEniCS Project is a collaborative project for the development of innovative concepts and tools for automated scientific computing, with a particular focus on automated solution of differential equations by finite element methods. FEniCS has an extensive list of features for automated, efficient solution of differential equations, including automated solution of variational problems, automated error control and adaptivity, a comprehensive library of finite elements, high performance linear algebra and many more.

References in zbMATH (referenced in 417 articles , 2 standard articles )

Showing results 1 to 20 of 417.
Sorted by year (citations)

1 2 3 ... 19 20 21 next

  1. Ambartsumyan, Ilona; Khattatov, Eldar; Nordbotten, Jan M.; Yotov, Ivan: A multipoint stress mixed finite element method for elasticity on simplicial grids (2020)
  2. Brewster, Jack; Juniper, Matthew P.: Shape sensitivity of eigenvalues in hydrodynamic stability, with physical interpretation for the flow around a cylinder (2020)
  3. DeCaria, Victor; Iliescu, Traian; Layton, William; McLaughlin, Michael; Schneier, Michael: An artificial compression reduced order model (2020)
  4. Evans, Claire; Pollock, Sara; Rebholz, Leo G.; Xiao, Mengying: A proof that Anderson acceleration improves the convergence rate in linearly converging fixed-point methods (but not in those converging quadratically) (2020)
  5. Evcin, Cansu; Uğur, Ömür; Tezer-Sezgin, Münevver: Controlling the power-law fluid flow and heat transfer under the external magnetic field using the flow index and the Hartmann number (2020)
  6. Farrell, Patrick E.; Gazca-Orozco, P. A.; Süli, Endre: Numerical analysis of unsteady implicitly constituted incompressible fluids: 3-field formulation (2020)
  7. Grigoriev, Vasiliy V.; Iliev, Oleg; Vabishchevich, Petr N.: Computational identification of adsorption and desorption parameters for pore scale transport in periodic porous media (2020)
  8. Guo, Liwei; Vardakis, John C.; Chou, Dean; Ventikos, Yiannis: A multiple-network poroelastic model for biological systems and application to subject-specific modelling of cerebral fluid transport (2020)
  9. Harbrecht, Helmut; Schmidlin, Marc: Multilevel methods for uncertainty quantification of elliptic PDEs with random anisotropic diffusion (2020)
  10. Kaczmarczyk, Łukasz; Ullah, Zahur; Lewandowski, Karol; Meng, Xuan; Zhou, Xiao-Yi; Athanasiadis, Ignatios; Nguyen, Hoang; Chalons-Mouriesse, Christophe-Alexandre; Richardson, Euan J.; Miur, Euan; Shvarts, Andrei G.; Wakeni, Mebratu; Pearce, Chris J.: MoFEM: An open source, parallel nite element library (2020) not zbMATH
  11. Landet, Tormod; Mardal, Kent-Andre; Mortensen, Mikael: Slope limiting the velocity field in a discontinuous Galerkin divergence-free two-phase flow solver (2020)
  12. Lanzendörfer, M.; Hron, J.: On multiple solutions to the steady flow of incompressible fluids subject to do-nothing or constant traction boundary conditions on artificial boundaries (2020)
  13. Lepe, Felipe; Mora, David: Symmetric and nonsymmetric discontinuous Galerkin methods for a pseudostress formulation of the Stokes spectral problem (2020)
  14. Michael Ortner; Lucas Gabriel; Coliado Bandeira: Magpylib: A free Python package for magnetic field computation (2020) not zbMATH
  15. Murray, Ryan; Young, Glenn: Neutral competition in a deterministically changing environment: revisiting continuum approaches (2020)
  16. Nguyen-Thanh, Vien Minh; Zhuang, Xiaoying; Rabczuk, Timon: A deep energy method for finite deformation hyperelasticity (2020)
  17. Reguly, István Z.; Mudalige, Gihan R.: Productivity, performance, and portability for computational fluid dynamics applications (2020)
  18. Spiridonov, Denis; Vasilyeva, Maria; Chung, Eric T.: Generalized multiscale finite element method for multicontinua unsaturated flow problems in fractured porous media (2020)
  19. Stubblefield, Aaron G.; Spiegelman, Marc; Creyts, Timothy T.: Solitary waves in power-law deformable conduits with laminar or turbulent fluid flow (2020)
  20. Tyrylgin, Aleksei; Vasilyeva, Maria; Spiridonov, Denis; Chung, Eric T.: Generalized multiscale finite element method for the poroelasticity problem in multicontinuum media (2020)

1 2 3 ... 19 20 21 next

Further publications can be found at: http://fenicsproject.org/citing/