VGAM

R package VGAM: Vector Generalized Linear and Additive Models , Vector generalized linear and additive models, and associated models (Reduced-Rank VGLMs, Quadratic RR-VGLMs, Reduced-Rank VGAMs). This package fits many models and distribution by maximum likelihood estimation (MLE) or penalized MLE. Also fits constrained ordination models in ecology. (Source: http://cran.r-project.org/web/packages)


References in zbMATH (referenced in 105 articles , 3 standard articles )

Showing results 1 to 20 of 105.
Sorted by year (citations)

1 2 3 4 5 6 next

  1. Ejike R. Ugba: serp: An R package for smoothing in ordinal regression (2021) not zbMATH
  2. Fasiolo, M., Wood, S. N., Zaffran, M., Nedellec, R., Goude, Y. : qgam: Bayesian Nonparametric Quantile Regression Modeling in R (2021) not zbMATH
  3. Gregor Zens, Sylvia Frühwirth-Schnatter, Helga Wagner: Efficient Bayesian Modeling of Binary and Categorical Data in R: The UPG Package (2021) arXiv
  4. Jessup, Sébastien; Boucher, Jean-Philippe; Pigeon, Mathieu: On fitting dependent nonhomogeneous loss models to unearned premium risk (2021)
  5. Michael J. Wurm, Paul J. Rathouz, Bret M. Hanlon: Regularized Ordinal Regression and the ordinalNet R Package (2021) not zbMATH
  6. Pedroso, Vinicius César; Taconeli, Cesar Augusto; Giolo, Suely Ruiz: Estimation based on ranked set sampling for the two-parameter Birnbaum-Saunders distribution (2021)
  7. Umlauf, N., Klein, N., Simon, T., Zeileis, A: bamlss: A Lego Toolbox for Flexible Bayesian Regression (and Beyond) (2021) not zbMATH
  8. Wei, Zheng; Kim, Daeyoung: On exploratory analytic method for multi-way contingency tables with an ordinal response variable and categorical explanatory variables (2021)
  9. Wollschläger, Daniel: R compact. The fast introduction into data analysis (2021)
  10. Zhao, Jun; Kim, SungBum; Kim, Hyoung-Moon: Closed-form estimators and bias-corrected estimators for the Nakagami distribution (2021)
  11. Fernández, Daniel; Liu, Ivy; Costilla, Roy; Gu, Peter Yongqi: Assigning scores for ordered categorical responses (2020)
  12. Justine Lequesne, Philippe Regnault: vsgoftest: An R Package for Goodness-of-Fit Testing Based on Kullback-Leibler Divergence (2020) not zbMATH
  13. Martin, Bryan D.; Witten, Daniela; Willis, Amy D.: Modeling microbial abundances and dysbiosis with beta-binomial regression (2020)
  14. Puth, Marie-Therese; Tutz, Gerhard; Heim, Nils; Münster, Eva; Schmid, Matthias; Berger, Moritz: Tree-based modeling of time-varying coefficients in discrete time-to-event models (2020)
  15. Rainer Hirk, Kurt Hornik, Laura Vana: mvord: An R Package for Fitting Multivariate Ordinal Regression Models (2020) not zbMATH
  16. Tchorbadjieff, Assen; Mayster, Penka: Geometric branching reproduction Markov processes (2020)
  17. Torsten Hothorn: Most Likely Transformations: The mlt Package (2020) not zbMATH
  18. Berger, Moritz; Welchowski, Thomas; Schmitz-Valckenberg, Steffen; Schmid, Matthias: A classification tree approach for the modeling of competing risks in discrete time (2019)
  19. De Micheaux, Pierre Lafaye; Liquet, Benoît; Sutton, Matthew: PLS for Big Data: a unified parallel algorithm for regularised group PLS (2019)
  20. Espinosa, Javier; Hennig, Christian: A constrained regression model for an ordinal response with ordinal predictors (2019)

1 2 3 4 5 6 next