Ipopt

Ipopt (Interior Point OPTimizer, pronounced eye-pea-Opt) is a software package for large-scale ​nonlinear optimization. It is designed to find (local) solutions of mathematical optimization problems of the from min f(x), x in R^n s.t. g_L <= g(x) <= g_U, x_L <= x <= x_U, where f(x): R^n --> R is the objective function, and g(x): R^n --> R^m are the constraint functions. The vectors g_L and g_U denote the lower and upper bounds on the constraints, and the vectors x_L and x_U are the bounds on the variables x. The functions f(x) and g(x) can be nonlinear and nonconvex, but should be twice continuously differentiable. Note that equality constraints can be formulated in the above formulation by setting the corresponding components of g_L and g_U to the same value. Ipopt is part of the ​COIN-OR Initiative.


References in zbMATH (referenced in 538 articles )

Showing results 481 to 500 of 538.
Sorted by year (citations)

previous 1 2 3 ... 23 24 25 26 27 next

  1. Zavala, Victor M.; Biegler, Lorenz T.: Nonlinear programming strategies for state estimation and model predictive control (2009)
  2. Zhang, Wen; Ma, Heping: Chebyshev-Legendre method for discretizing optimal control problems (2009)
  3. Alizadeh, Farid; Eckstein, Jonathan; Noyan, Nilay; Rudolf, Gábor: Arrival rate approximation by nonnegative cubic splines (2008)
  4. Anand, Christopher Kumar; Ren, Tingting; Terlaky, Tamás: Optimizing teardrop, an MRI sampling trajectory (2008)
  5. Armand, Paul; Benoist, Joël: A local convergence property of primal-dual methods for nonlinear programming (2008)
  6. Armand, Paul; Benoist, Joël; Orban, Dominique: Dynamic updates of the barrier parameter in primal-dual methods for nonlinear programming (2008)
  7. Benson, Hande Y.; Shanno, David F.: Interior-point methods for nonconvex nonlinear programming: Regularization and warmstarts (2008)
  8. Bielschowsky, Roberto H.; Gomes, Francisco A. M.: Dynamic control of infeasibility in equality constrained optimization (2008)
  9. Birgin, E. G.; Martínez, J. M.: Improving ultimate convergence of an augmented Lagrangian method (2008)
  10. Bonami, Pierre; Biegler, Lorenz T.; Conn, Andrew R.; Cornuéjols, Gérard; Grossmann, Ignacio E.; Laird, Carl D.; Lee, Jon; Lodi, Andrea; Margot, François; Sawaya, Nicolas; Wächter, Andreas: An algorithmic framework for convex mixed integer nonlinear programs (2008)
  11. Buchbinder, N.; Kimbrel, T.; Levi, R.; Makarychev, K.; Sviridenko, M.: Online make-to-order joint replenishment model: Primal dual competitive algorithms (2008)
  12. Byrd, Richard H.; Nocedal, Jorge; Waltz, Richard A.: Steering exact penalty methods for nonlinear programming (2008)
  13. Callies, Rainer; Rentrop, Peter: Optimal control of rigid-link manipulators by indirect methods (2008)
  14. Costa, M. Fernanda P.; Fernandes, Edite M. G. P.: Practical implementation of an interior point nonmonotone line search filter method (2008)
  15. Günlük, Oktay; Linderoth, Jeff: Perspective relaxation of mixed integer nonlinear programs with indicator variables (2008)
  16. Kameswaran, Shivakumar; Biegler, Lorenz T.: Advantages of nonlinear-programming-based methodologies for inequality path-constrained optimal control problems -- a numerical study (2008)
  17. Kameswaran, Shivakumar; Biegler, Lorenz T.: Convergence rates for direct transcription of optimal control problems using collocation at Radau points (2008)
  18. Maurer, Helmut; Pesch, Hans Josef: Direct optimization methods for solving a complex state-constrained optimal control problem in microeconomics (2008)
  19. Nguyen, An Danh; Hachemi, Abdelkader; Weichert, Dieter: Application of the interior-point method to shakedown analysis of pavements (2008)
  20. Nowak, Ivo; Vigerske, Stefan: Lago: a (heuristic) branch and cut algorithm for nonconvex minlps (2008)

previous 1 2 3 ... 23 24 25 26 27 next