MayaVi is a free, cross platform, easy-to-use scientific data visualizer. It provides a powerful GUI to ease the visualization process. It is written in Python and uses the Visualization Toolkit (VTK) for the graphics. MayaVi can be scripted from other Python programs and also from the interactive Python interpreter. MayaVi includes the VTK Pipeline browser. The VTK Pipeline browser is a Python module (vtkPipeline) that enables one to view and configure the objects in the VTK pipeline graphically with a Tkinter-based GUI. The browser should work for any Python script that uses VTK. MayaVi also provides classes to pickle a VTK object and a simple class documentation browser. (Source:

References in zbMATH (referenced in 28 articles )

Showing results 1 to 20 of 28.
Sorted by year (citations)

1 2 next

  1. Bogosel, Beniamin; Oudet, Edouard: Longest minimal length partitions (2022)
  2. Privat, Yannick; Robin, Rémi; Sigalotti, Mario: Optimal shape of stellarators for magnetic confinement fusion (2022)
  3. Alex M. Ganose; Amy Searle; Anubhav Jain; Sinéad M. Griffin: IFermi: A python library for Fermi surface generation and analysis (2021) not zbMATH
  4. Garyfallidis et al.: FURY: advanced scientific visualization (2021) not zbMATH
  5. Ramabathiran, Amuthan A.; Ramachandran, Prabhu: SPINN: sparse, physics-based, and partially interpretable neural networks for PDEs (2021)
  6. Bäcker, Arnd; Meiss, James D.: Elliptic bubbles in Moser’s 4D quadratic map: the quadfurcation (2020)
  7. Guo, Liwei; Vardakis, John C.; Chou, Dean; Ventikos, Yiannis: A multiple-network poroelastic model for biological systems and application to subject-specific modelling of cerebral fluid transport (2020)
  8. Quinn, James; MacTaggart, David; Simitev, Radostin D.: The effect of anisotropic viscosity on the nonlinear MHD kink instability (2020)
  9. Tobias Stål, Anya M. Reading: A Grid for Multidimensional and Multivariate Spatial Representation and Data Processing (2020) not zbMATH
  10. C. Bane Sullivan; Alexander A. Kaszynski: PyVista: 3D plotting and mesh analysis through a streamlined interface for the Visualization Toolkit (VTK) (2019) not zbMATH
  11. Cimrman, Robert; Lukeš, Vladimír; Rohan, Eduard: Multiscale finite element calculations in Python using sfepy (2019)
  12. Filip, Simion: Tropical dynamics of area-preserving maps (2019)
  13. Bäcker, Arnd; Meiss, James D.: Moser’s quadratic, symplectic map (2018)
  14. Martínez-Ruiz, D.; Meunier, P.; Favier, B.; Duchemin, L.; Villermaux, E.: The diffusive sheet method for scalar mixing (2018)
  15. Anastassiou, Stavros; Bountis, Tassos; Bäcker, Arnd: Homoclinic points of 2D and 4D maps via the parametrization method (2017)
  16. Strumik, Marek; Stasiewicz, Krzysztof: Multidimensional Hall magnetohydrodynamics with isotropic or anisotropic thermal pressure: numerical scheme and its validation using solitary waves (2017)
  17. Hurtado-Velasco, Ronald; Gonzalez-Llorente, Jesus: Simulation of the magnetic field generated by square shape Helmholtz coils (2016)
  18. Onken, Franziska; Lange, Steffen; Ketzmerick, Roland; Bäcker, Arnd: Bifurcations of families of 1D-tori in 4D symplectic maps (2016)
  19. Brune, Peter R.; Knepley, Matthew G.; Smith, Barry F.; Tu, Xuemin: Composing scalable nonlinear algebraic solvers (2015)
  20. Ewerz, Carlo; Gasenzer, Thomas; Karl, Markus; Samberg, Andreas: Non-thermal fixed point in a holographic superfluid (2015)

1 2 next