References in zbMATH (referenced in 24 articles , 2 standard articles )

Showing results 1 to 20 of 24.
Sorted by year (citations)

1 2 next

  1. Anastasiou, Andreas; Gaunt, Robert E.: Wasserstein distance error bounds for the multivariate normal approximation of the maximum likelihood estimator (2021)
  2. Davies, I.; Marigliano, O.: Coloured graphical models and their symmetries (2021)
  3. Li, Qiong; Gao, Xin; Massam, Hélène: Bayesian model selection approach for coloured graphical Gaussian models (2020)
  4. Ishi, Hideyuki; Kołodziejek, Bartosz: Characterization of the Riesz exponential family on homogeneous cones (2019)
  5. Anastasiou, Andreas: Assessing the multivariate normal approximation of the maximum likelihood estimator from high-dimensional, heterogeneous data (2018)
  6. Massam, H.; Li, Q.; Gao, X.: Bayesian precision and covariance matrix estimation for graphical Gaussian models with edge and vertex symmetries (2018)
  7. Michałek, Mateusz; Sturmfels, Bernd; Uhler, Caroline; Zwiernik, Piotr: Exponential varieties (2016)
  8. Vinciotti, Veronica; Augugliaro, Luigi; Abbruzzo, Antonino; Wit, Ernst C.: Model selection for factorial Gaussian graphical models with an application to dynamic regulatory networks (2016)
  9. Forbes, Peter G. M.; Lauritzen, Steffen: Linear estimating equations for exponential families with application to Gaussian linear concentration models (2015)
  10. Roverato, Alberto: Log-mean linear parameterization for discrete graphical models of marginal independence and the analysis of dichotomizations (2015)
  11. Ha, Min Jin; Sun, Wei: Partial correlation matrix estimation using ridge penalty followed by thresholding and re-estimation (2014)
  12. Gehrmann, Helene; Lauritzen, Steffen L.: Estimation of means in graphical Gaussian models with symmetries (2012)
  13. Kiiveri, Harri; de Hoog, Frank: Fitting very large sparse Gaussian graphical models (2012)
  14. Markus Kalisch; Martin Mächler; Diego Colombo; Marloes Maathuis; Peter Bühlmann: Causal Inference Using Graphical Models with the R Package pcalg (2012) not zbMATH
  15. Shah, Parikshit; Chandrasekaran, Venkat: Group symmetry and covariance regularization (2012)
  16. Uhler, Caroline: Geometry of maximum likelihood estimation in Gaussian graphical models (2012)
  17. Gehrmann, Helene: Lattices of graphical Gaussian models with symmetries (2011)
  18. Gottard, Anna; Marchetti, Giovanni Maria; Agresti, Alan: Quasi-symmetric graphical log-linear models (2011)
  19. Sturmfels, Bernd; Uhler, Caroline: Multivariate Gaussians, semidefinite matrix completion, and convex algebraic geometry (2010)
  20. Marco Scutari: Learning Bayesian Networks with the bnlearn R Package (2009) arXiv

1 2 next