References in zbMATH (referenced in 35 articles )

Showing results 1 to 20 of 35.
Sorted by year (citations)

1 2 next

  1. Bean, Brennan; Sun, Yan; Maguire, Marc: Interval-valued kriging for geostatistical mapping with imprecise inputs (2022)
  2. Bivand, Roger S.; Gómez-Rubio, Virgilio: Spatial survival modelling of business re-opening after Katrina: survival modelling compared to spatial probit modelling of re-opening within 3, 6 or 12 months (2021)
  3. Dong, Zhihang; Chen, Yen-Chi; Dobra, Adrian: A statistical framework for measuring the temporal stability of human mobility patterns (2021)
  4. Ferreira, Marco A. R.; Porter, Erica M.; Franck, Christopher T.: Fast and scalable computations for Gaussian hierarchical models with intrinsic conditional autoregressive spatial random effects (2021)
  5. Ghorbani, Mohammad; Vafaei, Nafiseh; Dvořák, Jiří; Myllymäki, Mari: Testing the first-order separability hypothesis for spatio-temporal point patterns (2021)
  6. Gottschalk, Hanno; Kahl, Karsten: Coarsening in algebraic multigrid using Gaussian processes (2021)
  7. Menafoglio, Alessandra; Pigoli, Davide; Secchi, Piercesare: Kriging Riemannian data via random domain decompositions (2021)
  8. Pebesma, Edzer: Book review of: C. K. Wikle et al., Spatio-temporal statistics with R. Chapman and Hall/CRC (2021)
  9. Raim, Andrew M.; Holan, Scott H.; Bradley, Jonathan R.; Wikle, Christopher K.: Spatio-temporal change of support modeling with \textttR (2021)
  10. Verdoy, Pablo Juan: Enhancing the SPDE modeling of spatial point processes with INLA, applied to wildfires. Choosing the best mesh for each database (2021)
  11. Watson, Joe; Joy, Ruth; Tollit, Dominic; Thornton, Sheila J.; Auger-Méthé, Marie: Estimating animal utilization distributions from multiple data types: a joint spatiotemporal point process framework (2021)
  12. Melo, Carlos E.; Mateu, Jorge; Melo, Oscar O.: A distance-based method for spatial prediction in the presence of trend (2020)
  13. Tolosana-Delgado, Raimon; Mueller, Ute; van den Boogaart, K. Gerald: Geostatistics for compositional data: an overview (2019)
  14. Eckardt, Matthias; Mateu, Jorge: Point patterns occurring on complex structures in space and space-time: an alternative network approach (2018)
  15. Melo, Carlos E.; Melo, Oscar O.; Mateu, Jorge: A distance-based model for spatial prediction using radial basis functions (2018)
  16. Micheas, Athanasios C.; Chen, Jiaxun: sppmix: Poisson point process modeling using normal mixture models (2018)
  17. Starunova, Olga A.; Rudnev, Sergey G.; Starodubov, Vladimir I.: HCViewer: software and technology for quality control and processing raw mass data of preventive screening (2017)
  18. Ayele, Dawit G.; Zewotir, Temesgen T.: Childhood mortality spatial distribution in Ethiopia (2016)
  19. Menezes, Raquel; Piairo, Helena; García-Soidán, Pilar; Sousa, Inês: Spatial-temporal modellization of the (\mathrmNO_2) concentration data through geostatistical tools (2016)
  20. Quijano, Alex John; Joyner, Michele L.; Ross, Chelsea; Watts, J. Colton; Seier, Edith; Jones, Thomas C.: Spatio-temporal analysis of foraging behaviors of \textitAnelosimusstudiosus utilizing mathematical modeling of multiple spider interaction on a cooperative web (2016)

1 2 next


Further publications can be found at: https://geodacenter.asu.edu/research/publications