NWChem computes the properties of molecular and periodic systems using quantum mechanical descriptions of the electronic wavefunction or density. NWChem also performs classical molecular dynamics and free energy simulations. These approaches may be combined to perform mixed quantum-mechanics and molecular-mechanics simulations. Developed at Pacific Northwest National Laboratory, NWChem has been designed to provide maximum efficiency on large parallel computing resources. (Source: http://www.psc.edu/)

References in zbMATH (referenced in 38 articles , 2 standard articles )

Showing results 1 to 20 of 38.
Sorted by year (citations)

1 2 next

  1. Khokhriakov, N. V.: First-principles research of interaction between 3d-transition metal ions and a graphene divacancy on the supercomputer base (2021)
  2. He Ma, Wennie Wang, Siyoung Kim, Man-Hin Cheng, Marco Govoni, Giulia Galli: PyCDFT: A Python package for constrained density functional theory (2020) arXiv
  3. Popovici, Doru Thom; Schatz, Martin D.; Franchetti, Franz; Low, Tze Meng: A flexible framework for multidimensional DFTs (2020)
  4. Xinming Qin, Honghui Shang, Lei Xu, Wei Hu, Jinlong Yang, Shigang Li, Yunquan Zhang: The static parallel distribution algorithms for hybrid density-functional calculations in HONPAS package (2020) arXiv
  5. Krull, B. T.; Minion, M. L.: Parallel-in-Time Magnus integrators (2019)
  6. Lin, Lin; Lu, Jianfeng; Ying, Lexing: Numerical methods for Kohn-Sham density functional theory (2019)
  7. Rai, Prashant; Sargsyan, Khachik; Najm, Habib; Hirata, So: Sparse low rank approximation of potential energy surfaces with applications in estimation of anharmonic zero point energies and frequencies (2019)
  8. Bodroski, Zarko; Vukmirović, Nenad; Skrbic, Srdjan: Gaussian basis implementation of the charge patching method (2018)
  9. Bylaska, Eric L.; Aprà, Edoardo; Kowalski, Karol; Jacquelin, Mathias; de Jong, Wibe A.; Vishnu, Abhinav; Palmer, Bruce; Daily, Jeff; Straatsma, Tjerk P.; Hammond, Jeff R.; Klemm, Michael: Transitioning NWChem to the next generation of Manycore machines (2018)
  10. Rai, P.; Sargsyan, K.; Najm, H.: Compressed sparse tensor based quadrature for vibrational quantum mechanics integrals (2018)
  11. Springer, Paul; Bientinesi, Paolo: Design of a high-performance GEMM-like tensor-tensor multiplication (2018)
  12. Straatsma, Tjerk P. (ed.); Antypas, Katerina B. (ed.); Williams, Timothy J. (ed.): Exascale scientific applications: scalability and performance portability (2018)
  13. Gyevi-Nagy, László; Tasi, Gyula: SYVA: a program to analyze symmetry of molecules based on vector algebra (2017)
  14. Bock, Nicolas; Challacombe, Matt; Kalé, Laxmikant V.: Solvers for (\mathcalO(N)) electronic structure in the strong scaling limit (2016)
  15. Rakhuba, M. V.; Oseledets, I. V.: Grid-based electronic structure calculations: the tensor decomposition approach (2016)
  16. Santamaria, Ruben; de la Paz, Antonio Alvarez; Roskop, Luke; Adamowicz, Ludwik: Statistical contact model for confined molecules (2016)
  17. Braun, Moritz: Finite element Hartree-Fock calculations in three dimensions for atoms and small molecules (2014)
  18. Nguyen, Huy; Shi, Hao; Xu, Jie; Zhang, Shiwei: CPMC-lab: a Matlab package for constrained path Monte Carlo calculations (2014)
  19. Yu, Weikuan; Que, Xinyu; Tipparaju, Vinod; Vetter, Jeffrey S.: Hicoo: hierarchical cooperation for scalable communication in global address space programming models on Cray XT systems (2012) ioport
  20. Rohwedder, Thorsten; Schneider, Reinhold: An analysis for the DIIS acceleration method used in quantum chemistry calculations (2011)

1 2 next